
Deploying and Operating Production
Applications on Kubernetes in
Hybrid Cloud Environments

Kubernetes in
the Enterprise

Michael Elder, Jake Kitchener
& Dr. Brad Topol

Compliments of

FREE CHAPTERS

Build

Smart

Kubernetes makes it easy to
bind your app to Watson, by relieving
the pain around security, scale, and
infrastructure management.

Get hands-on experience through
tutorials and courses.

ibm.biz/oreillykubernetes

http://www.ibm.ibiz/OReillyKubernetes

Michael Elder, Jake Kitchener,
and Dr. Brad Topol

Kubernetes in the
Enterprise

Deploying and Operating Production
Applications on Kubernetes in

Hybrid Cloud Environments

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04324-9

[LSI]

Kubernetes in the Enterprise
by Michael Elder, Jake Kitchener, and Dr. Brad Topol

Copyright © 2018 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Nicole Tache and Michele
Cronin
Production Editor: Melanie Yarbrough
Copyeditor: Octal Publishing, LLC

Proofreader: Sonia Saruba
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

October 2018: First Edition

Revision History for the First Edition
2018-09-27: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Kubernetes in the
Enterprise, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the authors, and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

http://oreilly.com/safari

Table of Contents

Preface. v

1. An Introduction to Containers and Kubernetes. 1
The Rise of Containers 1
Kubernetes Arrives to Provide an Orchestration and

Management Infrastructure for Containers 4
The Cloud Native Computing Foundation Tips the Scale for

Kubernetes 6
CNCF Kubernetes Conformance Certification Keeps the

Focus on User Needs 7
Summary 8

iii

Preface

Kubernetes is a cloud infrastructure that provides for the deploy‐
ment and orchestration of containerized applications. The Kuber‐
netes project is supported by a very active open source community
that continues to experience explosive growth. With support from
all the major vendors and the myriad contributors of all sizes,
Kubernetes has established itself as the de facto standard for cloud-
native computing applications.

Although Kubernetes has the potential to dramatically improve the
creation and deployment of cloud-native applications in the enter‐
prise, getting started with it in enterprise environments can be diffi‐
cult. This book is targeted toward developers and operators who are
looking to use Kubernetes as their primary approach for creating,
managing, deploying, and operating their container-based cloud-
native computing applications.

The book is structured so that developers and operators who are
new to Kubernetes can use it to gain a solid understanding of
Kubernetes fundamental concepts. In addition, for experienced
practitioners who already have a significant understanding of
Kubernetes, this book provides several chapters focused on the cre‐
ation of enterprise-quality Kubernetes applications in private, pub‐
lic, and hybrid cloud environments. It also brings developers and
operators up to speed on key aspects of production-level cloud-
native enterprise applications such as continuous delivery, log col‐
lection and analysis, security, scheduling, autoscaling, networking,
storage, audit, and compliance. Additionally, this book provides an
overview of several helpful resources and approaches that enable
you to quickly become a contributor to Kubernetes.

v

Chapter 1 provides an overview of both containers and Kubernetes.
It then discusses the Cloud Native Computing Foundation (CNCF)
and the ecosystem growth that has resulted from its open gover‐
nance model and conformance certification efforts. In Chapter 2, we
provide an overview of Kubernetes architecture, describe several
ways to run Kubernetes, and introduce many of its fundamental
constructs including Pods, ReplicaSets, and Deployments. Chapter 3
covers more advanced Kubernetes capabilities such as load balanc‐
ing, volume support, and configuration primitives such as Config‐
Maps and Secrets, StatefulSets, and DaemonSets. Chapter 4 provides
a description of our production application that serves as our enter‐
prise Kubernetes workload. In Chapter 5, we present an overview of
continuous delivery approaches that are popular for enterprise
applications. Chapter 6 focuses on the operation of enterprise appli‐
cations, examining issues such as log collection and analysis and
health management of your microservices. Chapter 7 provides in-
depth coverage of operating Kubernetes environments and
addresses topics such as access control, autoscaling, networking,
storage, and their implications on hybrid cloud environments. We
offer a discussion of the Kubernetes developer experience in Chap‐
ter 8. Finally, in Chapter 9, we conclude with a discussion of areas
for future growth in Kubernetes.

vi | Preface

CHAPTER 1

An Introduction to Containers
and Kubernetes

In this first chapter, we begin with a historical background of the
origin of both containers and Kubernetes. We then describe the cre‐
ation of the Cloud Native Computing Foundation and the role it has
played in the explosive growth of Kubernetes and its ecosystem. We
conclude this chapter with an overview of Kubernetes Conformance
Certification initiatives, which are critical to ensuring Kubernetes
interoperability, supporting portable workloads, and maintaining a
cohesive open source ecosystem.

The Rise of Containers
In 2012, the foundation of most cloud environments was a virtuali‐
zation infrastructure that provided users with the ability to instanti‐
ate multiple virtual machines (VMs). The VMs could attach volume
storage and execute on cloud infrastructures that supported a vari‐
ety of network virtualization options. These types of cloud environ‐
ments could provision distributed applications such as web service
stacks much more quickly than was previously possible. Before the
availability of these types of cloud infrastructures, if an application
developer wanted to build a web application, they typically waited
weeks for the infrastructure team to install and configure web
servers and database and provide network routing between the new
machines. In contrast, these same application developers could uti‐

1

lize the new cloud environments to self-provision the same applica‐
tion infrastructure in less than a day. Life was good.

Although the new VM-based cloud environments were a huge step
in the right direction, they did have some notable inefficiencies. For
example, VMs could take a long time to start, and taking a snapshot
of the VM could take a significant amount of time as well. In addi‐
tion, each VM typically required a large number of resources, and
this limited the ability to fully exploit the utilization of the physical
servers hosting the VMs.

At Pycon in March of 2013, Solomon Hykes presented an approach
for deploying web applications to a cloud that did not rely on VMs.
Instead, Solomon demonstrated how Linux containers could be
used to create a self-contained unit of deployable software. This new
unit of deployable software was aptly named a container. Instead of
providing isolation at a VM level, isolation for the container unit of
software was provided at the process level. The process running in
the container was given its own isolated file system and was alloca‐
ted network connectivity. Solomon announced that the software
they created to run applications in containers was called Docker, and
would be made available as an open source project.

For many cloud application developers that were accustomed to
deploying VM-based applications, their initial experience with
Docker containers was mind-blowing. When using VMs, deploying
an application by instantiating a VM could easily take several
minutes. In contrast, deploying a Docker container image took just
a few seconds. This dramatic improvement in performance was
because instantiating a Docker image is more akin to starting a new
process on a Linux machine. This is a fairly lightweight operation,
especially when compared to instantiating a whole new VM.

Container images also showed superior performance when a cloud
application developer wanted to make changes to a VM image and
snapshot a new version. This operation was typically a very time-
consuming process because it required the entire VM disk file to be
written out. With Docker containers, a multilayered filesystem is
used instead. If changes are made in this situation, they are captured
as changes to the filesystem and represented by a new filesystem
layer. Because of this, a Docker container image could snapshot a
new version by writing out only the changes to the filesystem as a
new filesystem layer. In many cases, the amount of changes to the

2 | Chapter 1: An Introduction to Containers and Kubernetes

https://www.youtube.com/watch?v=wW9CAH9nSLs
https://www.youtube.com/watch?v=wW9CAH9nSLs

filesystem for a new container image are quite small and thus the
snapshot operation is extremely efficient. For many cloud applica‐
tion developers who started experimenting with containers, it
quickly became obvious that this new approach had tremendous
potential to improve the current state of the art for deploying appli‐
cations in clouds.

There was still one issue holding back the adoption of container
images: the perception that it was not possible to run enterprise
middleware as container images. Advanced prototyping initiatives
took place to investigate the difficulty of running these images. It
was proven quickly that developers could successfully run enterprise
middleware such as WebSphere Liberty, and Db2 Express as Docker
container images. Sometimes, a few changes were necessary or per‐
haps a Linux kernel upgrade was required, but in general the Docker
container image approach was proven to be suitable for running
enterprise middleware.

The container approach for deploying web applications experienced
significant growth in a short period, and it was soon supported on a
variety of cloud platforms. Here is a summary of the key advantages
of using the container-image approach over VM images for deploy‐
ing software to cloud-based environments:

Container image startup is much faster than VM image startup
Starting a container image is essentially the equivalent of start‐
ing a new process. In contrast, starting a VM image involves
first booting an operating system (OS) and related services and
is much more time consuming,

Capturing a new container image snapshot is much faster than a VM
snapshot operation

Containers utilize a layered filesystem and any changes to the
filesystem are written as a new layer. With container images,
capturing a new snapshot of the container image requires writ‐
ing out only the new updates to the filesystem that the process
running in the container has created. When performing a snap‐
shot of a VM image instance, the entire VM disk file must be
written out, and this is typically an extremely time-consuming
process.

Container images are much smaller than VM images
A typical container image is portrayed in megabytes, whereas a
VM image is most commonly portrayed in gigabytes.

The Rise of Containers | 3

https://www.docker.com/company
https://www.docker.com/company

1 Brendan Burns et al., “Borg, Omega, and Kubernetes: Lessons Learned from Three
Container-Management Systems over a Decade”. ACM Queue 14 (2016): 70–93.

Build once, run anywhere
Docker enabled developers to build container images on their
laptops, test them, and then deploy to the cloud knowing that
not only the same code would be running in the cloud, but the
entire runtime would be a bit-for-bit copy. Oftentimes with vir‐
tualization and traditional Platform as a Service (PaaS), devel‐
opers test on one runtime configuration on their local system
but don’t have control over the cloud runtime. This leads to
reduced confidence and more test requirements.

Better resource utilization
Because container images are much smaller in size and are at
the process level, they take up fewer resources than a VM. As a
result, it is possible to put a larger number of containers on a
physical server than is possible when placing VMs on a physical
server.

In the next section, we provide a background on Kubernetes, which
is a platform for the management and orchestration of container
images.

Kubernetes Arrives to Provide an
Orchestration and Management
Infrastructure for Containers
As previously discussed, Docker was responsible for introducing
developers to the concept of container-based applications. Docker
provided very consumable tooling for container development and
storage of containers in registries. However, Docker was not the
only company with experience using container-based applications in
cloud environments.

For more than a decade, Google had embraced the use of Linux con‐
tainers as the foundation for applications deployed in its cloud.1

Google had extensive experience orchestrating and managing con‐
tainers at scale and had developed three generations of container
management systems: Borg, Omega, and Kubernetes. Kubernetes
was the latest generation of container management developed by

4 | Chapter 1: An Introduction to Containers and Kubernetes

http://bit.ly/2vIrL4S
http://bit.ly/2vIrL4S
https://kubernetes.io/

2 Brendan Burns et al., “Borg, Omega, and Kubernetes: Lessons Learned from Three
Container-Management Systems over a Decade”. ACM Queue 14 (2016): 70–93.

Google. It was a redesign based upon lessons learned from Borg and
Omega, and was made available as an open source project. Kuber‐
netes delivered several key features that dramatically improved the
experience of developing and deploying a scalable container-based
cloud application:

Declarative deployment model
Most cloud infrastructures that existed before Kubernetes was
released provided a procedural approach based on a scripting
language such as Ansible, Chef, Puppet, and so on for automat‐
ing deployment activities. In contrast, Kubernetes used a declar‐
ative approach of describing what the desired state of the system
should be. Kubernetes infrastructure was then responsible for
starting new containers when necessary (e.g., when a container
failed) to achieve the desired declared state. The declarative
model was much clearer at communicating what deployment
actions were desired, and this approach was a huge step forward
compared to trying to read and interpret a script to determine
what the desired deployment state should be.

Built-in replica and autoscaling support
In some cloud infrastructures that existed before Kubernetes,
support for replicas of an application and providing autoscaling
capabilities were not part of the core infrastructure and, in some
cases, never successfully materialized. These capabilities were
provided as core features in Kubernetes, which dramatically
improved the robustness and consumability of its orchestration
capabilities.

Improved networking model
Kubernetes mapped a single IP address to a Pod, which is
Kubernetes’ smallest unit of container aggregation and manage‐
ment. This approach aligned the network identity with the
application identity and simplified running software on Kuber‐
netes.2

Kubernetes Arrives to Provide an Orchestration and Management Infrastructure for Containers
| 5

http://bit.ly/2vIrL4S
http://bit.ly/2vIrL4S

3 Vaughan-Nicholls, Steven J. (2015-07-21). “Cloud Native Computing Foundation seeks
to forge cloud and container unity”, ZDNet.

4 Check out the “Cloud Native Computing Foundation (“CNCF”) Charter” on the Cloud
Native Computing Foundation website.

5 See the list of members on the Cloud Native Computing Foundation website.

Built-in health-checking support
Kubernetes provided container health checking and monitoring
capabilities that reduced the complexity of identifying when
failures occur.

Even with all the innovative capabilities available in Kubernetes,
enterprise companies were still reticent to adopt a technology that is
an open source project supported by a single vendor, especially
when other alternatives for container orchestration such as Docker
Swarm were available. Enterprise companies would have been much
more willing to adopt Kubernetes if it were instead a multiple-
vendor and meritocracy-based open source project backed by a
solid governance policy and a level playing field for contributing. In
2015, the Cloud Native Computing Foundation was formed to
address these issues.

The Cloud Native Computing Foundation Tips
the Scale for Kubernetes
In 2015, the Linux Foundation initiated the creation of the Cloud
Native Computing Foundation (CNCF).3 The CNCF’s mission is to
create and drive the adoption of a new computing paradigm that is
optimized for modern distributed systems environments capable of
scaling to tens of thousands of self-healing multitenant nodes.4 In
support of this new foundation, Google donated Kubernetes to the
CNCF to serve as its seed technology. With Kubernetes serving as
the core of its ecosystem, the CNCF has grown to more than 250
member companies, including Google Cloud, IBM Cloud, Amazon
Web Services (AWS), Docker, Microsoft Azure, Red Hat, VMware,
Intel, Huawei, Cisco, Alibaba Cloud, and many more.5 In addition,
the CNCF ecosystem has grown to hosting 17 open source projects,
including Prometheus, Envoy, GRPC, and many others. Finally, the
CNCF also nurtures several early stage projects and has eight
projects accepted into its Sandbox program for emerging technolo‐
gies.

6 | Chapter 1: An Introduction to Containers and Kubernetes

http://www.zdnet.com/article/cloud-native-computing-foundation-seeks-to-bring-more-cloud-and-container-unity/
http://www.zdnet.com/article/cloud-native-computing-foundation-seeks-to-bring-more-cloud-and-container-unity/
https://www.cncf.io/about/charter/
https://www.cncf.io/about/members/

With the weight of the vendor-neutral CNCF foundation behind it,
Kubernetes has grown to have more than 2,300 contributors from a
wide range of industries. In addition to hosting several cloud-native
projects, the CNCF provides training, a Technical Oversight Board,
a Governing Board, a community infrastructure lab, and several cer‐
tification programs. In the next section, we describe CNCF’s highly
successful Kubernetes Conformance Certification, which is focused
on improving Kubernetes interoperability and workload portability.

CNCF Kubernetes Conformance Certification
Keeps the Focus on User Needs
A key selling point for any open source project is that different ven‐
dor distributions of the open source project are interoperable. Cus‐
tomers are very concerned about vendor lock-in: being able to easily
change the vendor that provides a customer their open source infra‐
structure is crucial. In the context of Kubernetes, it needs to be easy
for the customer to move its Kubernetes workloads from one ven‐
dor’s Kubernetes platform to a different vendor’s Kubernetes plat‐
form. In a similar fashion, a customer might have a workload that
normally runs on an on-premises Kubernetes private cloud, but
during holiday seasons, the workload might merit obtaining addi‐
tional resources on a public Kubernetes cloud as well. For all these
reasons, it is absolutely critical that Kubernetes platforms from dif‐
ferent vendors be interoperable and that workloads are easily
portable to different Kubernetes environments.

Fortunately, the CNCF identified this critical requirement early on
in the Kubernetes life cycle before any serious forks in the Kuber‐
netes distributions had occurred. The CNCF formed the Kubernetes
Conformance Certification Workgroup. The mission of the Con‐
formance Certification Workgroup is to provide a software con‐
formance program and test suite that any Kubernetes
implementation can use to demonstrate that it is conformant and
interoperable.

As of this writing, 60 vendor distributions had successfully passed
the Kubernetes Conformance Certification Tests. The Kubernetes
Conformance Workgroup continues to make outstanding progress,
focusing on topics such as increased conformance test coverage,
automated conformance reference test documentation generation,

CNCF Kubernetes Conformance Certification Keeps the Focus on User Needs | 7

https://www.cncf.io
https://www.cncf.io/certification/software-conformance/
https://www.cncf.io/certification/software-conformance/
https://developer.ibm.com/code/2018/01/22/new-years-update-kubernetes-conformance-certification-program/

and was even a major highlight of the KubeCon Austin 2017 Key‐
note presentation.

Summary
This chapter discussed a variety of factors that have contributed to
Kubernetes becoming the de facto standard for the orchestration
and management of cloud-native computing applications. Its declar‐
ative model, built-in support for autoscaling, improved networking
model, health-check support, and the backing of the CNCF have
resulted in a vibrant and growing ecosystem for Kubernetes with
adoption across cloud applications and high-performance comput‐
ing domains. In Chapter 2, we begin our deeper exploration into the
architecture and capabilities of Kubernetes.

8 | Chapter 1: An Introduction to Containers and Kubernetes

https://www.youtube.com/watch?v=Z3aBWkNXnhw
https://www.youtube.com/watch?v=Z3aBWkNXnhw

	Kubernetes
	Copyright
	Table of Contents
	Preface
	Chapter 1. An Introduction to Containers and Kubernetes
	The Rise of Containers
	Kubernetes Arrives to Provide an Orchestration and Management Infrastructure for Containers
	The Cloud Native Computing Foundation Tips the Scale for Kubernetes
	CNCF Kubernetes Conformance Certification Keeps the Focus on User Needs
	Summary

