
Developers Are Users Too:

Designing Crypto and Security APIs That Busy Engineers
and Sysadmins Can Use Securely

Matthew Green, Johns Hopkins University
Matthew Smith, University of Bonn

Prof. Dr. Matthew Smith

Seite 2

Origins of Usable Security

§  Three seminal ‘90 papers are seen as the origin of Usable
Security and Privacy research*
§  Zurko and Simon’s: “User-Centered Security”
§  Adams and Sasse’s: “Users Are Not the Enemy”
§  Whitten and Tygar’s “Why Johnny Can’t Encrypt: A Usability

Evaluation of PGP 5.0”
§  All argued that users should not be seen as a problem to be

dealt with,
§  but that security experts need to communicate more with

users, and adopt user-centered design approaches.

* Garfinkel et al. Usable Security, History, Themes, and Challenges, 2014

Seite 3

Evaluating With Users
Evaluating

Without Users
E1 Literature Review
E2 Cognitive Walkthrough
E3 Heuristic Evaluation
E4 Model-Based Evaluation

Qualitative
E5 Conceptual Model Extraction
E6 Silent Observation
E7 Think Aloud
E8 Constructive Interaction
E9 Retrospective Testing

Quantitative
E10 Controlled Experiments

+ Interviews,
questionnaires,...

Evaluation Techniques

Seite 4

1.  Keep the interface simple!
2.  Speak the user’s language!
3.  Minimize the user’s memory load!
4.  Be consistent and predictable!
5.  Provide feedback!
6.  Design clear exits and closed dialogs!
7.  Offer shortcuts for experts!
8.  Help to recover from errors, offer Undo!
9.  Prevent errors!
10.  Include help and documentation!

10 Usability Principles (Jakob Nielsen)

Seite 5

7 Characteristics of good APIs by J. Bloch

1.  Easy to learn

2.  Easy to use, even without
documentation

3.  Hard to misuse

4.  Easy to read and maintain
code that uses it

5.  Sufficiently powerful to satisfy
requirements

6.  Easy to extend

7.  Appropriate to audience

Seite 6

OpenSSL Error handling

§  Most OpenSSL functions will return an integer to indicate success
or failure. Typically a function will return 1 on success or 0 on error.
All return codes should be checked and handled as appropriate.

§  Note that not all of the libcrypto functions return 0 for error and 1 for
success.

§  There are exceptions which can trip up the unwary.
§  For example if you want to check a signature with some functions

you get 1 if the signature is correct, 0 if it is not correct and -1 if
something bad happened like a memory allocation failure.

source: wiki.openssl.org

if (1 != some_verify_function())
 /* signature successful */

 if (some_verify_function())
 /* signature successful */

Seite 7

Algorithm Choices 1/2

§  Far too much developer responsibility for choosing and
securely composing algorithms
§  Support for unauthenticated encryption (CBC/CTR)
§  RC4!
§  Generic composition of ciphers & MACs
§  Emphasis on legacy applications

Seite 8

Algorithm Choices 2/2

§  RSA with PKCS #1v1.5 encryption
§  Provided as the only mandatory padding scheme in many

software devices (e.g., PKCS11 tokens)
§  It is conceivably possible to encrypt some types of data

securely with PKCS#1v1.5 padding !
§  Almost nobody knows how to do it !

(even OpenSSL has active timing vulns.)!

Seite 9

Non-intuitive interfaces

Source: MS Crypto API (current) h/t iarce

Seite 10

TLS	
 Sta'c	
 Code	
 Analysis	

§  Analysis	
 of	
 13,500	
 popular,	
 free	
 apps	
 from	
 Google’s	
 Play	

Market	

§  92.8	
 %	
 of	
 the	
 apps	
 use	
 the	
 Internet	
 permission	

§  91.7	
 %	
 of	
 networking	
 API	
 calls	
 are	
 HTTP(S)	
 related	

§  0.8	
 %	
 exclusively	
 HTTPS	
 URLs	

§  46.2	
 %	
 mix	
 HTTP	
 and	
 HTTPS	

§  17.28	
 %	
 of	
 all	
 apps	
 that	
 use	
 HTTPS	
 API	
 include	
 code	
 that	

fails	
 in	
 TLS	
 cer'ficate	
 valida'on	

§  1070	
 include	
 cri'cal	
 code	

§  790	
 accept	
 all	
 cer'ficates	

§  284	
 accept	
 all	
 hostnames	

More details can be found in our CSS paper: Why Eve and Mallory Love Android

Seite 11

HTTPS	
 on	
 Android	

The	
 default	
 Android	
 HTTPS	
 API	
 	

implements	
 correct	
 cer'ficate	
 valida'on.	

What could possibly go wrong?

Usable Security and Privacy Lab – Universität Bonn

Seite 12

HTTPS Usage on Android
and iOS

§  A server needs a certificate
that was signed by a trusted
Certificate Authority
§  (~130 pre-installed CAs)

§  For non-trusted certificates a
custom workaround is needed

§  Error handling requires custom
code

§  Additional security measures
such as pinning or Certificate
Transparency require custom
code

Usable Security and Privacy Lab – Universität Bonn

Seite 13

Trust	
 me	
 I‘m	
 an	
 Engineer	

Usable Security and Privacy Lab – Universität Bonn

Seite 14

Help?

Usable Security and Privacy Lab – Universität Bonn

A: Look at this tutorial
http://blog.antoine.li/index.php/2010/10/android-trusting-ssl-certificates

 stackoverflow.com

Q: I am getting an error of
„javax.net.ssl.SSLException:
Not trusted server certificate“.

[...]

I have spent 40 hours
researching and trying to
figure out a workaround for
this issue.

Seite 15

Trusting all Certificates

Usable Security and Privacy Lab – Universität Bonn

Seite 16

Common: Blaming Developers

“It’s all the developers’ fault!”

Usable Security and Privacy Lab – Universität Bonn

Seite 17

Talking	
 To	
 Developers	

§  Finding	
 broken	
 HTTPS	
 in	
 Android	
 and	
 iOS	
 apps	
 is	

good…	

…knowing	
 what	
 the	
 root	
 causes	
 are	
 is	
 even	
 be]er	

	

§  We	
 contacted	
 80	
 developers	
 of	
 broken	
 apps	

§  informed	
 them	

§  offered	
 further	
 assistance	

§  asked	
 them	
 for	
 an	
 interview	

✓

✓
?

§  15	
 developers	
 agreed	
 ✓

Usable Security and Privacy Lab – Universität Bonn

Seite 18

Novice Developers

“This app was one of our first mobile apps and
when we noticed that there were problems with
the SSL certificate, we just implemented the first
working solution we found on the Internet.”
	

Usable Security and Privacy Lab – Universität Bonn

Seite 19

Intermediate Developers

“We use self-signed certificates for testing purposes
and the easiest way to make them working is to
remove certificate validation. Somehow we must
have forgotten to remove that code again when we
released our app.“
	

Usable Security and Privacy Lab – Universität Bonn

Seite 20

Expert Developers (kind of...)

“[...] When I used Wireshark to look at the traffic, Wireshark
said that this is a proper SSL protected data stream and I
could not see any cleartext information when I manually
inspected the packets. So I really cannot see what the
problem is here.”

	

Usable Security and Privacy Lab – Universität Bonn

Seite 21

Expert Developers (time constrained)

“The app accepts all SSL certificates because
some users wanted to connect to their blogs with
self-signed certs and […] because Android does
not provide an easy-to-use SSL certificate
warning message, it was a lot easier to simply
accept all self-signed certificates.”

	

vs.

Usable Security and Privacy Lab – Universität Bonn

Seite 22

Developer	
 Survey	
 Summary	

§  Self-Signed Certificates – Development.
§  Developers commonly wish to use self-signed certificates for testing

purposes and hence want to turn off certificate validation during testing.

§  Self-Signed Certificates – Production.
§  A few developers wanted to use self-signed certificates in their

production app for cost, effort and customer satisfaction reasons.

§  Code Complexity.
§  Developers described the code-level customization features of HTTPS

as too complex and requiring too much effort.

§  Certificate Pinning / Trusted Roots.
§  Developers liked the idea of having an easy way to limit the number of

trusted certificates and/or certificate authorities.

§  Global Warning Message.
§  Developers requested global HTTPS warning messages since they

described building their own warning messages as too challenging.
	

Usable Security and Privacy Lab – Universität Bonn

Seite 23

A new approach TLS on Android
Changed the TLS API on Android
§  Removed TrustManager extension

capabilities – no overriding of errors
§  Support self-signed certificates
§  Support certificate Pinning
§  Offer default warning / user

interaction
§  Integration via configuration

C
A

V
a
li
d
a
ti
o
n

C
A

P
in
n
in
g

C
e
rt
ifi
c
a
te

P
in
n
in
g

D
e
v
e
lo
p
m
e
n
t
M

o
d
e

L
o
g
g
in
g

V
a
li
d
a
ti
o
n

S
tr
a
te
g
ie
s

Standard X — — — — —
Our approach X X X X X P

Table 1: A comparison between the status quo and
our approach concerning validation features.
X = supported out of the box;
� = custom code required;
P = pluggable.

org.apache.http.conn.ssl

SSLSocketFactory
start

Force hostname
verification

android.net.ssl

TrustManagerClient
(in app)

Force certificate validation;
Configurable by the users

android.net.ssl

TrustManagerService
(in system)

Pluggable Certificate
Validation:
(CA-based validation, CT,
AKI, TACK, etc.)

javax.net.ssl

TrustManager
replaced by

User options
Developer options

Turn on/o↵ SSLPinning,
Accept all certificates
on developer devices

Human Com-
puter Interface

Warn the user if con-
nection is insecure

Existing architectureOur modifications

uses

uses

configures

decisions

w
arn

if
S
S
L
valid

ation
fails

removed

Figure 1: This figure illustrates the process of creat-
ing an SSL protected network connection. The grey
boxes comment on our contributions.

To this end, we provide the TrustManagerClient and Trust-

ManagerService that replace the capabilities of Android’s
default TrustManager (cf. Figure 1). We only modify meth-

ods which are private and final, thus binary compatibility is
given and we do not break modularity. More information on
the compatibility of our approach can be found in Section 6.2
and Appendix B. Both the client and service part of our SSL
validation implementation prevent Android apps from us-
ing broken certificate validation. Upon creation of a socket,
the newly developed TrustManagerClient automatically re-
quests SSL certificate validation from the service counter-
part. App developers cannot circumvent secure validation
anymore, since customized TrustManager implementations
are prevented by our modification. The TrustManagerSer-

vice enforces SSL certificate validation against the trusted
root CAs and can drop the connection or present the user
with a warning message in case validation fails (more on this
in Section 5.2.4).
To mandate secure hostname verification, we patched all

stock hostname verifiers to enforce browser compatible host-
name verification. We also added hostname verification to
the central SSLSocketFactory (cf. Figure 1). Hostname ver-
ification is conventionally delegated to the application layer:
With HTTPS for example, the hostname for verification is
extracted from the requested URL. In contrast, Android’s
SSLSocketConnection implementation does not check the
hostname, even though it may have been provided in the
method call. Our patch improves this behavior by verifying
hostnames with the parameters provided during connection
establishment for any SSL connection.
This strict enforcement could cause developer issues in

some usage scenarios described by our study participants,
so several configuration options are described in the follow-
ing in order to adapt our solution to di↵erent situations.
Additionally, we discuss potential pathological cases in the
appendix (see App. B.1).

5.2.2 Self-Signed Certificates
To allow developers to use self-signed certificates for test-

ing purposes, we add a new option (cf. Figure 2) to the
Developer settings, allowing app developers to turn o↵ SSL
certificate validation for specific apps installed on their de-
vice without needing to modify the code of their app. This
option is monitored by the TrustManagerService and skips
certificate validation for this app only. These settings only
a↵ect the specific app on the developer device, not the apps
deployed onto users’ devices or other apps on the developer’s
device. Thus, even if developers forget to turn on certificate
validation again, this has no e↵ect on apps on user devices.
This feature e↵ectively protects users from forgetful devel-
opers and solves many of the problems we discovered during
code analysis and interviews.
We only allow this option on devices that have developer

settings enabled. Thus, app developers have a simple way to
work with self-signed certificates during development while
preventing careless users from turning o↵ SSL certificate val-
idation for their apps.4 Nonetheless, we show a warning
message using strong wording that advises against abuse
(cf. Fig. 2(b)) when this option is toggled.

4While it is conceivable that users annoyed by warning mes-
sages could find information online on how to activate de-
veloper options and then turn o↵ certificate validation for a
specific app, we believe this risk is fairly low compared to
the huge benefit this option brings. Additionally, we recom-
mend limiting this option to devices that are registered with
Google developer accounts to prevent normal users from

More details can be found in our CSS paper: Rethinking ssl development in an appified world

AndroidManifest.xml

1 <manifest xmlns:android="http://schemas.android.com/apk/res/
android"

2 package="de.luh.dcsec.android.wifianalysis"
3 android:versionCode="6"
4 android:versionName="1.0" >
5
6 <uses-sdk
7 android:minSdkVersion="4"
8 android:targetSdkVersion="15" />
9

10 <uses-permission
android:name="android.permission.ACCESS_WIFI_STATE" />

11
12 <application
13 android:icon="@drawable/dcsec"
14 android:label="@string/app_name"
15 android:theme="@style/AppTheme" >
16 <activity
17

android:name="de.luh.dcsec.android.wifianalysis.MainActivity"
18 android:label="@string/title_activity_main" >
19 <intent-filter>
20 <action android:name="android.intent.action.MAIN" /

>
21
22 <category

android:name="android.intent.category.LAUNCHER" />
23 </intent-filter>
24 </activity>
25 </application>
26
27
28 <uses-ssl>
29 <pins host="securessl.com">
30 <pin type="ca" comment="Verisign Root CA">
31 8F:57:5A:C8:5B:09:63:B0:24:2B:90...
32 </pin>
33 <pin type="cert" comment="Self-Signed">
34 18:DA:D1:9E:26:7D:E8:BB:4A:21:58...
35 </pin>
36 </pins>
37 </uses-ssl>
38
39

Page 1

Seite 24

10 Rules for a good Crypto API?

1.  Easy to learn, even without crypto background

2.  Easy to use, even without documentation

3.  Hard to misuse. Incorrect use should lead to visible errors

4.  Hard to circumvent errors – except during testing/development

5.  Easy to read and maintain code that uses it

6.  Sufficiently powerful to satisfy non-security requirements

7.  Easy to extend Hard to change/override core functionality

8.  Appropriate to audience – this means people with no crypto
experience

9.  Assist with/handle end-user interaction

10.  However, where possible integrate into standard APIs so normal
developers never have to interact with crypto APIs in the first place

conduct developer studies

Seite 25

Evaluating With Users
Evaluating

Without Users
E1 Literature Review
E2 Cognitive Walkthrough
E3 Heuristic Evaluation
E4 Model-Based Evaluation

Qualitative
E5 Conceptual Model Extraction
E6 Silent Observation
E7 Think Aloud
E8 Constructive Interaction
E9 Retrospective Testing

Quantitative
E10 Controlled Experiments

+ Interviews,
questionnaires,...

Evaluation Techniques

