

Adapting Usability Investigations for
Agile User-centered Design

 Abstract

When our company chose to adopt an Agile
development process for new products, our User
Experience Team took the opportunity to adjust, and
consequently improve, our user-centered design (UCD)
practices.

Our interface design work required data from
contextual investigations to guide rapid iterations of
prototypes, validated by formative usability testing.
This meant that we needed to find a way to conduct
usability tests, interviews, and contextual inquiry—both
in the lab and the field—within an Agile framework.

To achieve this, we adjusted the timing and granularity
of these investigations, and the way that we reported
our usability findings. This paper describes our main
adaptations.

We have found that the new Agile UCD methods
produce better-designed products than the “waterfall”
versions of the same techniques. Agile communication
modes have allowed us to narrow the gap between
uncovering usability issues and acting on those issues
by incorporating changes into the product.

Keywords

usability method, Agile, XP, iterative development,
software, case study, field study, contextual inquiry,
ethnography, formative usability testing, user-centered
design, iterative design.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee. Copyright 2006, ACM.

Desirée Sy

Autodesk, Inc. (formerly Alias)

210 King Street East

Toronto, ON, M5A 1J7 Canada

desiree.sy@autodesk.com

Vol. 2, Issue 3, May 2007, pp. 112-132

 113

Context

As more organizations adopt Agile development
practices, usability practitioners want to ensure that the
resulting products are still designed with users in mind
[1,2,3,4,5,6,7]. This was the situation of our User
Experience Team at Alias (now Autodesk) in 2002. Our
group’s goal-directed rapid design process was
successful, and we wanted to continue to design
usable, engaging and innovative user experiences while
“working Agile.”

Members of our team, along with developers, were
trained in Agile software development practices by the
Cutter Consortium [8]. The method for gathering user
feedback taught Agile team members to conduct a
focus group after a feature was implemented,
demonstrate the product, and ask for users’ opinions.
This method was insufficient for our design process,
which relies heavily on observing detailed user behavior
with interactive usability investigation methods, such as
formative usability testing [9,10] and contextual inquiry
[11] before implementation.

Our initial approaches to conducting Agile usability
investigations had similarities to methods described by
Holtzblatt, Wendell, and Wood [12] and some of the
case studies reported by McInerney and Maurer [5], but
with modifications. The differences were previously
described by Miller [13] (but for an audience of
developers unfamiliar with usability methods), and by
Sy [14] (but with emphasis on the design iterations
rather than the investigation methodology).

This paper describes our adaptations to the timing,
granularity, and reporting used for Agile interactive
usability investigations, with an intended audience of
usability practitioners.

Agile development: a brief primer for
usability practitioners

Agile programming methods are a family of software
development processes [15,16,17] that share a
common philosophy (more fully described by the Agile
Manifesto at http://agilemanifesto.org/). Examples of
Agile principles include valuing the following:

 individuals and interactions over processes and tools

 working software over comprehensive
documentation

 customer collaboration over contract negotiation

 responding to change over following a plan.

In a traditional development lifecycle (sometimes called
waterfall lifecycle), requirements gathering for all
features in a release leads to a design phase, which is
then followed by coding and quality assurance testing.
The entire process for a release is measured in months,
if not years.

In contrast, the Agile development lifecycle is
characterized as a series of incremental mini-releases.
(See Figure 1.) Each mini-release, with a subset of the
features for the whole release, has its own
requirements analysis, design, implementation, and
quality assurance phases, and is called a working
version. Each working version must be complete and
stable, which makes it possible for the product release
date to coincide with that of any working version.
Working versions are created at regular intervals, called
iteration cycles or sprints, which are generally two to
four weeks long. Cycle end dates are fixed; features
that cannot be completed are moved to the next
working version.

 114

Figure 1. In a waterfall development cycle, analysis, design, coding, and quality assurance testing are separate stages of a software
release that spans months or years. In Agile development, each of a set of incremental mini-releases (each created in 2-4 weeks) has
these stages. Adapted from Cutter Consortium [8].

At the beginning of each iteration cycle, the full, cross-
functional Agile team meets to do cycle planning. They
determine the theme, or user story, of the next
working version, and the features to put in it. Future
cycles remain more loosely planned, since each cycle
planning session is based on the most current
information.

Cycle planning is guided by an overall vision or plan for
the release. At Alias, Agile teams did release-level
planning during a brief 4- to 6-week phase called Cycle
Zero. The first iteration immediately follows Cycle Zero.

Each feature (the smallest development component, as
defined by developers) is described on an index card
called a feature card. Feature cards are grouped into
iteration cycle clusters, and displayed in a public space
for the whole Agile team as a communication artifact, in
lieu of more traditional planning documents. Each
feature card describes the acceptance criteria that

determine when that feature is complete, and also
includes a time estimate for completion.

The Agile team meets daily at a short, stand-up
meeting (sometimes called a scrum), where team
members each describe what they are working on, and
any blocking issues. Scrums, through face-to-face
communication, take the place of detailed documents
to guide project planning.

Working versions are periodically delivered to users or
to customers to validate the acceptance criteria for the
feature cards. Their feedback influences current cycle
implementation, and directs future cycle planning.

Note that in Agile terminology, a customer is not a
person external to the product team who purchases or
uses the product, but a role filled by one or more
members of the product team. The duties of the Agile
customer include acting as the voice of the end-user on
the development team, and helping to prioritize and

 115

plan cycles and releases. Miller [18] suggests that
interaction designers who are willing to understand and
accept Agile development concepts are well-suited to
take on the Agile customer role.

This is particularly relevant to Agile usability
investigations because Agile projects are highly
feedback-driven, yet product teams often rely on user
opinion in situations where observation is more
appropriate (such as the focus group elicitation strategy
described earlier). Usability practitioners can be the
best-suited members of an Agile team to prevent this
type of data bias because of their skills in gathering and
analyzing user experience data. On the Agile projects
that our User Experience Team works on, interaction
designers assume the role of the Agile customer.

The iterative and incremental lifecycle of Agile
development methods described in Figure 1 are similar
to those of other iterative development processes (such
as the Rational Unified Process). They differ mainly in
the length of the iteration timeboxes (in Agile,
measured in weeks, rather than months), the fixed
nature of the cycle end dates, and the highly
collaborative and document-light form of project
planning and implementation. (There are other
differences as well, but these affect developers rather
than usability practitioners.)

Because of the similarities in their development
lifecycles, the adaptations to usability investigations
described in this paper may also benefit usability
practitioners working on projects using an iterative
development process.

Changes to the timing of usability
investigations

Problems with the timing of waterfall UCD
Previously, in waterfall development projects, the User
Experience Team conducted usability investigations as
early as we could during the development cycle.

We performed contextual inquiry (sometimes combined
with field usability testing of the prior release) before or
at the onset of a project, often during a market
validation for a release. During the design phase, we
would rapidly iterate on key designs for a release, using
formative in-house usability testing to direct the re-
design of prototypes [19,20]. We would then describe
the validated designs as feature specifications, and
pass them on to development to be incorporated into
the implemented code.

In theory, the analysis and design phases preceded the
implementation (see Figure 2). However, in practice,
developers would begin coding at the onset of a project
without waiting for feature specifications. The result
was that the implementation of some features would
begin before they were designed. To combat this
tendency, we investigated, designed, and validated well
in advance, often conducting usability investigations
almost a full release ahead. However, this led to writing
many unused or out-of-date feature specifications,
since we could not anticipate all planning issues (such
as business goals).

 116

Figure 2. In the perfect theoretical version of waterfall development, usability investigations contributing to the analysis and design
phases were supposed to precede coding, but in reality developers would begin coding immediately.

Also, since months often would pass between when we
specified a design and the time it was coded,
implementation would sometimes drift from the design
intent.

Finally, development for all features going into a
release would begin simultaneously, with one developer
working on each feature. Because there were more
developers than interaction designers, the result was
that some features in a release were designed while
other features were not. Furthermore, because work on
all features was partially implemented, waterfall
products often shipped with incomplete features,
despite delaying the release date to try and
accommodate feature completion.

We were caught between wanting to push our
requirements gathering as late as possible, so that the
most timely information would inform the product
direction, and yet not leaving it so late that too many
undesigned features started being implemented [13].

Just-in-time design
In contrast, on Agile projects the Agile team only
focuses on a few new features at a time. This means
that the User Experience Team does not have to work
on all the designs in a release at the same time.
Instead, we can focus on the most important designs, a
few at a time.

At any given time during the Agile development cycle
for a release, we conduct usability activities for only
those key designs. We then work closely with

 117

developers to ensure that implementations of the
designs do not drift from the validated design intent.

Because developers are working on only a subset of
features at one time, and interaction designers are
designing the same subset, this also means that any
features that require careful UCD work receive it. Since
everything in the product must be done, traces of half-
complete features don't impede the user experience.

In waterfall UCD, field investigation data would usually
not have a visible product impact until the next release.
Just-in-time design spreads out contextual inquiry and
field work through the whole development process,
instead of concentrating those activities at the
beginning of the lifecycle (or in the lifecycle of the
previous release). Consequently, the data that we bring
to Agile projects during cycle planning is up-to-the-
minute. This allows product improvements to be
implemented within the current release—sometimes
even in the next working version.

Two parallel tracks: iterating the design and
implementation separately, but simultaneously
A key principle of our User Experience Team’s UCD
process is design iteration; we need to be able to catch
design failures early, change designs as many times as
needed, and then incorporate the design fixes [19].

Therefore, we not only need to conduct formative
usability tests to check our prototypes, but we need to
do so before coding begins, while the design is still
malleable. Because coding begins immediately in Agile
development, we needed to find a way to separate
design iterations from implementation iterations.

To do this, the UCD work was done in an Interaction
Designer Track while developers worked in a separate
and parallel Developer Track [13,14]. The Agile UCD
parallel tracks for development and interaction design
are illustrated in Figure 3.

 118

Figure 3. To allow the User Experience Team to iterate on designs, we usability tested prototypes at least one cycle ahead of
developers, and then passed on the validated designs to be implemented. We would also conduct contextual inquiry for workflows at
least two cycles ahead, and usability test the implemented working version to check for design drift.

Usability investigation activities in Cycle Zero
Cycle Zero is the brief requirements-gathering phase at
the start of the project. Usability investigation activities
in Cycle Zero depend on whether the product is the
next release of an existing product or completely new.
They can include the following activities:

 Gathering data to refine or hone product- and
release-level goals. Facilitating the alignment of all
team members’ understanding of these goals, so
they constitute a shared vision.

 (For a completely new product) Interviewing or
conducting contextual inquiry during customer site
visits for market validation. Preparing high-level

exploratory designs for market validation. Based on
these data, deriving the design principles that
inform and guide design decisions for the product.

 (For an ongoing release) Analyzing and summarizing
prior contextual inquiry and usability test data.
Based on these data, elucidating release-level
design goals to inform and guide design decisions
through all iterations.

 (For a completely new market or capability)
Developing brief and vivid descriptions of target
users and workflows (light personas and scenarios)
from investigations.

 119

For example, we conducted an investigation during
Cycle Zero for SketchBook Pro v2.0, a digital sketching
application developed specifically for use with tablet
input devices. Version 1.0 of the product had a free
trial version. The release goal of v2.0 was “to improve
the rate of conversion of trial users to paid users by
removing barriers to purchase.” The User Experience
Team helped to focus the feature set by conducting a
survey targeted at people who had downloaded
SketchBook v1.0, but who had not purchased it. These
data helped refine the feature set for v2.0 from over
100 potential features to five major workflows. The
release goal also informed design prioritization during
cycle planning throughout the release lifecycle.

Usability activities for Cycle Zero of the first release of
Autodesk Showcase (a real-time automotive 3D
visualization product) were different. We helped the
team prepare for a market validation trip to Europe,
and also traveled there with the project manager and
subject matter expert. We interviewed potential
purchasers about their work activities for the areas that
the new product would support. We then reported
these back to the larger team. Also, these data were
the foundation for the design principles we wrote for
Autodesk Showcase that allowed us to make
prioritization and design decisions as development
progressed.

Cycle Zero usability activities are those that most
closely resemble their waterfall UCD counterparts.
However, they occur in weeks rather than months.

Usability investigation activities in iteration cycles
In Cycle 1, usability investigation activities can include:

 Designing prototypes for Cycle 2, and conducting
rapid formative usability testing to refine their
design.

 Conducting contextual inquiry and interviews to
investigate designs for Cycle 3.

During the first few early cycles, to give interaction
designers time to do these usability investigations,
developers work on coding software architecture (which
requires no user interface design) or important features
that need only minor design.

For example, during Cycle 1 for SketchBook Pro v2.0
developers worked on adding Adobe Photoshop export.
This was identified as a key issue that affected users’
purchasing decisions. It required significant
development effort, but had a very simple UI (adding
an item to the File Save As type list).

In Cycle 2, the designs from Cycle 1 are presented to
developers, who begin coding them. Interaction
designers work closely with developers to answer
questions about the design as it is implemented.

Cycle 2 usability investigation activities can include:

 Prototyping and usability testing for Cycle 3 designs,
using the requirements information gathered in
Cycle 1.

 Contextual inquiry to investigate designs for Cycle 4.

 Usability testing the implemented working version
from Cycle 1.

 120

This pattern of designing at least one cycle ahead of
developers, and gathering requirements at least two
cycles ahead, continues until the product is released.

In cycles later in the release, while we continue to
focus on checking the implementation of designs, we
can also begin some contextual investigations to
prepare for the Cycle Zero of the next release [13,14].

Changes to the granularity of usability
investigations

Problems with the size of the problems to investigate
The parallel tracks allowed the User Experience Team
to iterate designs before they were implemented.
However, we still had to deal with the reality of cycles
that were only two to four weeks long. We could
complete small designs in this timeframe, but complex
designs required more than four weeks to finish. We
needed to figure out how to do usability investigations
for designs spanning more than one Agile cycle.

Furthermore, the overall speed of Agile UCD was much
faster than when we were doing waterfall UCD. We had
to move much more quickly toward design solutions
with a fewer number of usability tests within a release.

Design chunking: Breaking designs apart into
cycle-sized pieces
We looked to the Agile model of implementation for
hints about how to approach this dilemma. Working
versions are implemented mini-releases that
incrementally build on each other. Based on the same
principles, we decided to create mini-designs that
incrementally build on each other.

We break large designs into small, cycle-sized pieces
called design chunks that incrementally add elements
to the overall design. We investigate, prototype, and

usability test design chunks in the Interaction Designer
Track, carrying the progressively built design forward in
this track until it is complete. Then, we pass the
finished design to the Developer Track for
implementation [14].

Interaction designers are trained to consider
experiences holistically, so breaking designs into
pieces—especially into pieces that do not initially
support workflows—can be difficult at first, but it is a
skill that comes with practice. Design chunking yields
many benefits in Agile UCD, which we will describe in
later sections.

To deconstruct a large design into smaller pieces, it is
essential to start with well-defined design goals and to
understand the high-level design intent. Our design
goals are derived from observation, which is why
contextual inquiry plays a critical role in our Agile UCD
process. Each design chunk lets us progressively
achieve a subset of the design goals.

The priority and sequence of the design chunks is
determined by what we can validate at any given time
in the product lifecycle. We examine the full list of
design goals, and decide which we can attain with the
current resources within a cycle’s length. There is also
an ordering dependency. In Agile projects, components
build on one another, so early design chunks must be
low-level and fundamental—design attributes that will
not change as more design chunks are added on top of
them. For example, for SketchBook Pro v2.0, we
needed to design the ability to move, rotate, and scale
a selected area in a canvas. Contextual investigation
during usability testing of the prior release told us that
these functions were experienced as one single high-
level activity (positioning and fitting a selection).

 121

Other observations were that users didn’t tend to need
this functionality in the first few hours of use in the
application, and that it was often used with 2D layers.

A few of the design goals that we derived from these
investigations included:

 Cursor travel should be minimized when swapping
between move, rotate, and scale.

 The interaction should feel natural and smooth.

 Users should be able to figure out how to position a
selected area with out-of-box materials, but not
necessarily in the first hour of use.

 The function should work seamlessly with layers.

These goals suggested an order of approach. We could
not validate the interaction of positioning a selection
with layers, for example, until users could work with a
high-fidelity prototype that incorporated the new
functionality with the existing layer feature. This clearly
was a much later stage of design for this feature, so we
designated it as a late design chunk.

It was possible, however, to design and validate the
kinesthetic qualities for the move, rotate, and scale
modes right away, within a 2-week period using only
internal resources. This was the earliest design chunk
that we worked on for this functionality.

For example, we examined two possible dragging
algorithms for the Rotate interaction. In one, dragging
the cursor along the virtual canvas was like putting
your hand on it and spinning it. In the other, dragging
the cursor along an axis would rotate the canvas—this
was like pulling along an invisible Rotate slider.
(Figure 4)

To evaluate these design alternatives, we asked
internal users (quality assurance, training, support, or
subject matter experts) to use high-fidelity prototypes
to rotate images, and observed the interaction. The
usability acceptance criteria for the design chunk
included checking whether users could rotate the
canvas accurately without instruction, and whether the
interaction felt smooth to them. We could get feedback
from each tester in less than two minutes—we did not
even have to set up informal usability test sessions to
achieve this. We could just drop by someone’s desk
with a tablet PC that had the prototypes installed, and
ask for a few minutes of their time.

Figure 4. An early design chunk for Move/Rotate/Scale
selection investigated two ways that dragging the cursor could
work for the Rotate mode. In one, dragging acted like a virtual
hand on the canvas. In the other, dragging along an axis
rotated the canvas.

 122

The interaction for the Move, Rotate, and Scale modes
were good choices as early design chunks for the
following reasons:

 We could prototype them very quickly. Our student
intern coded more than a dozen variations for this
design chunk within a cycle.

 It was easy to usability test them. In-house testers
were sufficient to evaluate the usability criteria, and
the prototypes for all modes took less than 15
minutes to test.

 We anticipated that some set-up or explanation
would be needed to run the prototypes, and we
knew that the testing tasks would be highly artificial,
and operation-level, rather than workflow-level. For
example, we told our testers that we had two
different algorithms for rotating (without explaining
how each one worked), and we had to intervene to
switch between the two prototypes. This was fine for
internal users, but it would be inappropriate and
confusing for an external end-user to evaluate these
prototypes.

 The interaction was a fundamental, low-level design
component. There could be many different ways
that we would approach how to position a selected
area, but no matter what happened for later design
chunks, we would need to decide on the drag
interaction.

 The design problem could be validated in isolation.
For the design goal we were looking at (a natural
and smooth interaction), we didn’t have to evaluate
the three modes in combination, so prototypes for
each mode could be quickly built separately. Once
all the modes were combined in a later design

chunk, we could address other more interdependent
design problems.

In contrast, the types of design chunks that we usually
complete in later cycles include the following:

 Prototypes that require an implementation or
technology that hasn’t been completed yet.

 Design chunks that provide workflow-level, rather
than operation-level, functionality.

 Design chunks to support any investigation of a
discoverability or learning goal, such as the design
of how a user will access a new function. Since
these are designs that depend on the first
experience of a user, you need to replicate that
experience to test them. These prototypes should be
incorporated into a copy of a working version to
avoid task bias.

 Design chunks that are hubs for other designs. For
example, many different designs converged in the
Brush Palette, which is why it was one of the last
designs that we completed for SketchBook Pro v2.0.

At the same time that we break big designs into these
small chunks, we are still completing small designs to
pass to development for the next iteration cycle. Key to
our success as interaction designers on Agile teams is
that we keep ahead of development, feeding a steady
stream of designs into the Developer Track. For this
reason, we only use design chunking for a few key
large designs per interaction designer in a release.

All of the illustrating examples in this article are slightly
simplified for clarity. It is possible to chunk more
complex designs than the one described. This is
because design chunks are not complete designs. They
are simply design components that can be prototyped,

 123

iterated, and validated within Agile timeframes. By
design chunking, we do not ignore high-level design
considerations; instead, we work toward them in cycle-
sized steps.

Progressive refinement of protocols: breaking usability
testing, contextual inquiry, and recruiting into cycle-
sized pieces
Agile UCD presents particular challenges in protocol
design for usability investigations, because of two
considerations:

 The progressively incremental character of
both implementation and design. It is one thing
to decide to design in chunks that build
incrementally, but how is it possible to validate and
investigate many small pieces for different designs
simultaneously? It is impossible to usability test
early-release design chunks with external users, and
seemingly impossible to conduct meaningful
contextual investigations to understand the work
users might do with them. Yet we needed to explore
our users’ work domains to derive relevant
activities, both to design later design chunks and
also to provide real-world (and hence, unbiased)
validation activities.

 The fixed number of usability investigations
that fit within the timeframe of a cycle. Because
Agile development is faster than waterfall, the time
to create a release is briefer. Thus, we have fewer
usability tests per design that we did in waterfall
UCD, and in particular, we have fewer opportunities
to test full workflows before they are implemented.
Yet, we need to uncover more information during
each investigation, since we need to collect

contextual information as we progress. In essence,
we need to mine more ore while drilling fewer holes.

To overcome these hurdles, we took the Agile idea of
progressive mini-iterations one step further. In addition
to design chunking, we also progressively performed
the following activities:

 defined test protocols

 recruited test participants

 conducted contextual investigations.

Just as working versions are mini-implementations that
get progressively closer to the final release, and design
chunks are mini-designs that get progressively closer to
the final designs, we use usability testers who get
progressively closer to our end-users, ask them to let
us observe them doing work that gets progressively
closer to their real-world activities, and then ask them
to do those activities as usability test tasks [21].

Because usability investigations are a limited resource,
we need to both maximize the information we collect
per session, and to hoard the validation commodity of
our external users. We reserve external users to test
only mid- to late-stage design chunks, and the focus of
those usability tests is on validating design goals that
can only be determined by an actual user.

For the earliest design chunks, as described in the
previous section, we use in-house users who share
some characteristics with our end-users (that is, people
who are not developers, and with the same domain
knowledge as our users). We ask them to do operation-
level tasks that would probably not occur in isolation in
real-world work (such as arbitrarily rotating an image
to different angles, for no reason).

 124

In later design chunks that have prototypes capable of
evaluating more holistic activities, we refine usability
test activities. Beginning with our internal testers, we
prepare very artificial tasks. For example, as shown in
Figure 5, we asked SketchBook Pro testers to position
and resize the shapes to fit within the appropriate
boundary lines. This was a completely arbitrary and
unnatural task. We admitted this to internal usability
testers, and then asked for a more realistic example of
when they might use the function. We used their
examples as our next iteration of the usability test task.

Figure 5. We asked usability testers to fit the shapes within
the boundary lines to test a mid-release design chunk.

With these newer test tasks, we then recruit usability
testers external to our company, and bring them in-
house to our usability lab. Because the actual users of
our products who are accessible to us are in limited
supply, and we want to reserve them for late-stage
design chunks, we find people who could be (but are
not) users. For example, these testers sometimes
include people studying in our users’ work domains. For
SketchBook Pro, we recruited computer animation

students, or students with digital sketching experience
from industrial design programs or art colleges.

We continue to refine our usability test tasks with these
participants, asking them whether the activities we ask
them to do represent how they might really use the
tool, and adjust the protocols for later testers.

Finally, when late-stage design chunks are available
that can emulate partial in-product workflows, we bring
these workflow prototypes to actual end-user sites for
usability testing. We call these users Design Partners.
They commit to evaluating a longitudinal series of
workflow prototypes, and sometimes also working
versions. They act as expert usability testers, and also
as observable beta testers. (Users who cannot commit
to a series of visits are used to test mid-stage design
chunks at our lab.)

For usability testing of workflow prototypes by Design
Partners, we start with the more realistic test tasks
derived from external usability testers. We often
progress to using real work files and true work
activities.

There are several progressive stages of contextual
investigations that we use for Agile UCD work, but all
are based on the idea of examining a user’s work
context for a specific activity in retrospect. These
methods are described more fully elsewhere [21].

Stages of contextual investigation include the following
activities:

 Interviewing and watching internal users. This
provides us with the relevant vocabulary and
framework to structure our interviews with external
users.

 125

 Asking external users to bring work artifacts
(identified by a remote interview) to our company.
This does not yield any environmental data about
our users, but can still provide us workflow context.

 Asking Design Partners to set up work artifacts at
their site. We visit them to watch both a high-level
walkthrough of the artifacts, and a compressed
workflow demonstration to view detailed
interactions.

 Installing a working version at a Design Partner’s
site, and then watching an artifact walkthrough and
compressed workflow demonstration (on- or off-
site).

This last stage—the ability to observe how using the
actual implemented product changes the work behavior
of users—is unique to Agile contextual investigations.
This contextual data can inform future designs within
the timeframe of a release. Comparable waterfall
contextual inquiry sessions could only guide designs for
the following release.

Mixing design chunks: studying more than one design
problem at a time
There seem to be an overwhelming number of usability
investigation activities for any given cycle in the
Interaction Designer Track described in Figure 3.

Design chunking is what gives us the freedom to solve
the problem of how to do so much at the same time in
fewer sessions. We combine smaller-scaled
investigations for different design chunks into single
usability investigation sessions.

Here are three hypothetical examples of usability
investigation sessions for different design chunks of
several complex designs:

 (Early design cycle) In-house usability test,
with internal users. A 15-minute session where a
QA person evaluates 6-8 very low-level prototypes
for two designs by performing operation-level tasks.
During the session, we ask for a better activity-level
task for each tool.

 (Mid-release design cycle) In-house usability
test, with external users. A one-hour session.
Before the test, we interview the tester by telephone
about a workflow for a future design (two cycles
later), and ask her to bring some relevant files on a
USB drive. We begin the session with the contextual
investigation, watching her walk us through the files
and demonstrate key interactions. We also usability
test four prototypes exploring different stages for
two design chunks we are designing in the current
cycle. During the session, we check that our test
activities are representative. If needed, we will
adjust the tasks for the tester coming in the next
day.

 (Late design cycle) Usability investigation, at a
Design Partner’s site. A 2-hour session, the
second in a series of longitudinal visits to the same
user. Before our visit, we ask the tester to set up
some files to show us what type of work he was
doing with the working version that we left with him
on our last visit. We also interview him concerning a
workflow for a future design (for the next release),
and ask if he can show us the relevant files. When
we arrive, we observe as he walks us through the
files and demonstrates the interactions. We note

 126

that he is using an implemented feature in an
unexpected way, and he gives us permission to
bring back the files so that we can demonstrate this
new workflow to the Agile team. We have brought
two workflow prototypes on a laptop, and he
usability tests them for us. We install the new
working version on his system, and watch a usability
test of the two new functions that have been added
since our last visit.

Breaking designs down into cycle-sized chunks gives us
the freedom to mix and match different types of
usability investigations into the same session, which
enables us to juggle more than one design, and more
than one type of usability investigation at the same
time. Design chunks are what allow us to elicit more
data from fewer users.

Changes to the reporting of usability
investigations

Oral storytelling: showing versus writing
Agile processes value “working software over
comprehensive documentation” [22], and yet
traditional deliverables from usability investigations
(such as formal UI specifications, use case scenarios, or
usability test reports) are formal documents. To deliver
on the prized Agile quality of rapid response, our User
Experience Team had to figure out how to reduce the
number of detailed documents that we wrote. We re-
evaluated the content and form of our communication
with the project team to re-align it with Agile principles.

We need to communicate the following information to
the Agile team:

 which designs we are working on, and
approximately when developers should expect to
receive them

 usability test results and high-level progress for
late-stage design chunks

 recommendations and fixes for working versions

 user and task information from external users,
especially from field visits

 the user interface design to be implemented.

Examining this list, we realized that this information
was only of value to the Agile team once it was in the
product, not when we wrote it down. In a sense, it was
interim data and did not need to be captured for
posterity. In fact, since its purpose was to instigate
action, written text was not the best medium to achieve
this. We needed to convey it to the team in a more
timely, vivid, and specific manner.

We patterned our solution on how other Agile team
members communicate. For developers and project
managers on an Agile team, documents such as
marketing and product requirements documents are
largely replaced by daily scrums and cycle planning
sessions, with the displayed feature cards acting as a
reference artifact for these discussions, supplemented
by brief documents. We do the same.

Design Cards: communicating to plan
We give high-level progress reports on upcoming
designs at the scrum. Upcoming designs are
represented on the planning boards as design cards,

 127

which are blue to differentiate them from feature cards,
and have no implementation time estimates [14].

In addition to keeping in touch with the whole Agile
team through the daily scrum, we work with developers
very closely throughout design and development.
Although the dual tracks depicted in Figure 3 seem
separate, in reality, interaction designers need to
communicate every day with developers. This is not
only to ensure that designs are being implemented
correctly, but also so that we have a thorough
understanding of technical constraints that affect
design decisions [13].

Issue Cards: communicating to persuade
We report information gathered from our Design
Partners the day after the visit in a review meeting that
happens after the scrum. Any interested Agile team
members can stay for the presentation, and it’s usually
the full team. This is far more people than those who
read our reports in the waterfall UCD days, and a wider
cross-section of the team than those who used to listen
to our debrief presentations. It often includes, for
example, technical writers and QA people.

We present the following kinds of information in the
form of verbal stories, supplemented where necessary
by a demonstration of the prototypes or working
versions to represent the observed interactions:

 successes with design prototypes or working
versions, and examples of our users’ work in the
application

 contextual information about users’ workflows,
especially unexpected uses of the product

 feature requests

 major usability problems with design prototypes

 bugs in working versions.

With these stories and demos, we replace personas
with people, and scenarios with workflows and sample
work files.

We use index cards as a reporting artifact for these
data, so the team is reminded of the presentation
during later cycles. To prepare for this, on the way back
from a Design Partner site, the interaction designers
write out individual usability issues, feature requests,
and bugs on issue cards [14].

After we present the information to the Agile team,
team members decide what to do about feature
requests or unexpected uses of the product. Sometimes
an issue card is moved immediately into the cycle
planning board, and becomes a feature or design card.
Any bugs are logged in our bug-tracking database.

The remaining issue cards are tracked on a User
Experience board in the same public space as the cycle
planning board. (See Figure 6.) On each issue card, the
interaction designers note any fixes for a design issue,
the usability testers who found it, and the iteration
progress.

 128

Figure 6. Issue cards are posted on a User Experience board.
As prototypes are fixed, the cards move from the Fix in
prototype area to the Fixed & works area of the board.

Issue cards move on the board from Usability issues to
Fix in prototype when the prototype design changes. If
the change solves the problem, then the card moves to
the Fixed and works area of the board.

The User Experience board also tracks feature requests
from Design Partners that are not moved to the cycle
planning boards as feature cards.

Moving to Feature Cards: communicating to implement
Finally, when designs are completed, the interaction
designers pass them to developers. Our Agile design
deliverables are also different than the comprehensive
feature specifications that we used to write for waterfall
development [14].

We present the design in person to the developer(s)
who will implement it. We demonstrate a typical
workflow on the last available prototype using data
from a Design Partner. We explain in detail any
additions or changes to the design from this prototype.

If the final prototype is a high-fidelity one, we also pass
the code to the developer as part of the specification.

With the developers, we then work out what feature
cards will represent the implementation of the design.
For a simple design, this may be only one or two cards.
We ensure that usability criteria are defined as part of
the acceptance criteria for the feature card before it is
added to the cycle planning board.

For a complex design, we help ease the transition to
feature cards by breaking the whole design into
suggested implementation chunks. Whereas the order
of design chunks depends on what can be validated
with the current resources, the order of implementation
chunks depends on creating working versions that
enable a user to complete a workflow. The interim
workflows will not be ideal, or even allow users to do
what they want to, but working versions should enable
users to complete actions that they can evaluate.

We work with developers to finalize the implementation
order, and they compose feature cards based on this.
Since they are responsible for completing the work on
feature cards, and for creating the time estimates,
developers own them. Once again, we ensure that
usability criteria are part of the acceptance criteria.

A factor that has allowed our User Experience Team to
modify our deliverables in this manner is that we were
in the same building as the rest of the Agile team. A
future challenge we may face is how to capture the
immediacy and vividness of our storytelling with team
members in other locations.

Documents are for the design team
Although the User Experience Team writes far fewer
documents working on Agile projects than we did for
waterfall projects, we have not eradicated the written

 129

word entirely. However, we had a key insight: we
ourselves are the primary readers of design documents.
We can, therefore, write the shortest possible
documents that still capture the information that we
need to reference [14].

This information is the design history for a feature or
set of features. The purpose of the record is principally
to avoid “design thrash,” where design decisions are
accidentally re-visited, particularly between versions, or
if a new User Experience Team member is added to a
project.

We generally write one document for each
implementation chunk. The document is written in a
medium that is easy to update (such as a Wiki page).

Information in a design history document can include
the following:

 Design goals and a brief description of the problems
that the design addresses.

 A high-level description of the design, including
rough sketches, and a pointer to the last design
prototype.

 Links to related design history documents.

 A reverse chronology of the design iterations,
including the reasons for the design changes, and
design limitations and constraints defined by
usability investigation data as design work proceeds.
Relevant usability investigation data are recorded in
this chronology. This section of the document is
written as design cycles progress. The oldest entry
in this design chronology describes technology
constraints.

 The names of the associated feature cards.

 As working versions are completed, the design
chronology is extended to include additional
workflow information and links to bugs related to
changes in design, or unexpected uses.

To give an idea of the length of this type of light
specification, the Move/Rotate/Scale selection feature
for SketchBook Pro was written as two documents (one
for each implementation chunk). One described the
look and interaction behavior for the Move/Rotate/Scale
UI widget, and the other described the interaction of
this widget within a selected area of the canvas. The
description sections of these documents (excluding the
design chronology and feature cards) were,
respectively, 1,215 and 735 words long.

Design history documents are available to the whole
Agile team, but we have found that few team members
read them, preferring the immediacy of face-to-face
conversation to clarify issues.

Reflections

Five years ago, our User Experience Team faced the
challenge of adjusting our practices. We didn’t
anticipate it then, but now we prefer Agile user-
centered design for the following reasons:

 More of the product is designed than before.

 Usability investigations are conducted throughout
the entire product release lifecycle, rather than
clustered at the front end of a release, or in the
prior release.

 The most important designs are worked on first, and
there is no effort wasted writing unused designs.

 130

 Product changes suggested by usability testing and
contextual inquiry investigations of the actual
product can be implemented in the current release.

 Just as formative usability test results allow us to
iterate on the design of a product, now the Agile
team’s responsiveness to contextual inquiry results
allow us to iterate on the requirements for a
product.

 Implementations of designs are more true to the
design intent. The overall quality of the user
experience in our Agile products is higher than in
the waterfall products we worked on.

Much of the power that drives user-centered design is
generated from observational data gathered in usability
investigations. By adjusting the way that we derived
and reported these data, we could harness its power to
the Agile characteristics of speed, responsiveness, and
high implementation quality to better fuel the UCD
engine.

Acknowledgements

When working Agile, it’s best to make haste slowly and
take a moment for reflection. I thank Autodesk for
giving me some of that time. The other key
contributors on our User Experience Team to the
described process innovations were John Schrag and
our fearless leader, Lynn Miller. They, Veronica Meuris,
Stephen Gaebel, Amy Kidd, Peter Liepa, and Catherine
Courage read early drafts, and helped me to clarify the
article. However, all errors and omissions are my own.
Illustrations in the article are by Marsha Leverock.

Practitioners’ take-away

Here are some practical implications of the concepts
discussed in this paper:

 For our User Experience Team, Agile user-centered
design resulted in better-designed software than
waterfall user-centered design. Agile communication
modes narrowed the gap between gathering
usability data and acting on it.

 Because Agile development is highly feedback-
driven, product teams may rely on user opinion in
situations where user observation is more
appropriate. Usability practitioners can be the best-
suited members of an Agile team to mitigate this
bias because of their skills in gathering and
analyzing user experience data.

 It is possible to use the familiar arsenal of usability
investigation methods on Agile (and other iterative
development) projects, including formative usability
testing, user and task analysis, interviews, and even
field-based work like contextual inquiry. This is
achieved by changing the timing and granularity of
the investigations, and how results are reported.

 Just as Agile (and iterative) development implement
software as incremental mini-releases, usability and
design activities can be scoped as incremental mini-
designs. Different validation and elicitation activities
can be blended within single sessions conducted at a
usability lab or in the field. Design activities occur at
least one Agile cycle or sprint ahead of the
development team in an Interaction Designer Track
separate from the Developer Track. Developers
receive validated designs.

 131

 Prototype demonstrations and daily conversation
have largely replaced detailed documents, such as
usability test reports and UI specifications, when
communicating with the product team. Documents
are now written for interaction designers, to record
a history of design decisions.

References

[1] Constantine, L. L. (2002). Process Agility and
Software Usability. Information Age, August 2002.

[2] Beck, K. and Cooper, A. (2002). Extreme
Programming vs. Interaction Design. Retrieved on
December 8, 2006 from
www.fawcette.com/interviews/beck_cooper/

[3] Patton, J. (2004). Interaction Design Meets Agility.
Retrieved on December 8, 2006 from
www.agilealliance.org/system/article/file/1368/file.
pdf

[4] Pearson, G., and Pearsall, S. (2005). Becoming
Agile: Usability and Short Project Cycles. User
Experience, 4(4), 2005.

[5] McInerney, P., and Maurer, F. (2005). UCD in Agile
Projects: Dream Team or Odd Couple?,
interactions, 12(6), November + December 2005,
19-23.

[6] Lee, J.C. (2006). Embracing Agile Development of
Usable Software Systems. Proceedings of CHI
2006. Montréal: ACM.

[7] Lievesley, M.A., and Yee, J.S.R. (2006). The Role of
the Interaction Designer in an Agile Software
Development Process. Proceedings of CHI 2006.
Montréal: ACM.

[8] Highsmith, J. A. III (2002). Agile Software
Development (course notes). Arlington, MA: Cutter
Consortium.

[9] Dumas, J., and Redish, J. (1999). A Practical Guide
to Usability Testing (revised edition). Bristol, U.K.:
Intellect.

[10] Rubin, J. (2001). Handbook of Usability Testing:
How to Plan, Design, and Conduct Effective Tests.
New York, NY: John Wiley & Sons.

[11] Holtzblatt, K., and Beyer, H. (1996). Contextual
design: defining customer-centered systems. San
Francisco, CA: Morgan Kaufmann Publishers.

[12] Holtzblatt, K., Wendell, J.B., and Wood, S. (2005).
Rapid Contextual Design. San Francisco, CA:
Morgan Kaufman/Elsevier.

[13] Miller, L. (2005). Case Study of Customer Input For
a Successful Product. Proceedings of Agile 2005.
Denver: Agile Alliance.

[14] Sy, D. (2005). Strategy & tactics for Agile design: a
design case study. Proceedings of UPA 2005.
Montréal: Usability Professionals’ Association.

[15] Highsmith, J. A. III (2000). Adaptive Software
Development: A Collaborative Approach to
Managing Complex Systems. New York, NY: Dorset
House Publishing Co., Inc.

[16] Beck, K. (2000). Extreme Programming Explained:
Embrace Change. Boston, MA: Addison-Wesley
Professional.

[17] Schwaber, K., and Beedle, M. (2002). Agile
Software Development with Scrum. Upper Saddle
River, NJ: Prentice Hall.

[18] Miller, L. (2006). Interaction Designers and Agile
Development: A Partnership. Proceedings of UPA
2006. Denver/Broomfield: Usability Professionals’
Association.

[19] Schrag, J. (2006). Using Formative Usability
Testing as a Fast UI Design Tool. Proceedings of
UPA 2006. Denver/Broomfield: Usability
Professionals’ Association.

 132

[20] Medlock, M., Terrano, M., Wixon, D. (2002) Using
the RITE Method to Improve Products: A Definition
and a Case Study. Proceedings of UPA 2002.
Orlando: Usability Professionals’ Association.

[21] Sy, D. (2006). Formative usability investigations
for open-ended tasks. Proceedings of UPA 2006.
Denver/Broomfield: Usability Professionals’
Association.

[22] Beck, K. et al. (2001). Manifesto for Agile Software
Development. Retrieved on December 7, 2006 from
agilemanifesto.org

[23] Highsmith, J. A. III (2004). Agile Project
Management. Boston, MA: Addison-Wesley/Pearson
Education.

Desirée Sy has been crafting useful
and enjoyable user experiences for
over 16 years, the last 11 of them at
Autodesk (formerly Alias). Customers
and trade reviewers have described the
user interfaces she’s designed as both
innovative and a pleasure to use. She

has presented and taught on topics, such as Agile user-
centered design, gathering good usability data,
usability investigations for open-ended tasks, and low-
cost usability investigations at UPA and ACM SIGDOC.

