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Abstract
The POSIX standard, developed 25 years ago, comprises

a set of operating system (OS) abstractions that aid appli-
cation portability across UNIX-based OSes. While OSes
and applications have evolved tremendously over the last
25 years, POSIX, and the basic set of abstractions it pro-
vides, has remained largely unchanged. Little has been done
to measure how and to what extent traditional POSIX ab-
stractions are being used in modern OSes, and whether new
abstractions are taking form, dethroning traditional ones. We
explore these questions through a study of POSIX usage
in modern desktop and mobile OSes: Android, OS X, and
Ubuntu. Our results show that new abstractions are taking
form, replacing several prominent traditional abstractions in
POSIX. While the changes are driven by common needs and
are conceptually similar across the three OSes, they are not
converging on any new standard, increasing fragmentation.

1. Introduction
The Portable Operating System Interface (POSIX) is the

IEEE standard operating system (OS) service interface for
UNIX-based systems. It describes a set of fundamental ab-
stractions needed for efficient construction of applications.
Born out of work in the early 1980s, when the fragmentation
of UNIX was of concern, it was created to enable applica-
tion developers to easily write application source code that
would be portable across multiple diverse OSes. While per-
fect portability was never a reality, the level of uniformity
added by POSIX has been valuable both for application de-
velopers and for educators alike. Application developers can
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code atop the same rough abstractions, and educators can
teach widely applicable abstractions in their OS courses.

Since its creation over 25 years ago, POSIX has evolved
to some extent (e.g., the most recent update was published in
2013 [55]), but the changes have been small overall. Mean-
while, applications and the computing platforms they run on
have changed dramatically: Modern applications for today’s
smartphones, desktop PCs, and tablets, interact with multi-
ple layers of software frameworks and libraries implemented
atop the OS. Although POSIX continues to serve as the sin-
gle standardized interface between these software frame-
works and the OS, little has been done to measure whether
POSIX abstractions are effective in supporting modern ap-
plication workloads, or whether new, non-standard abstrac-
tions are taking form, dethroning traditional ones. Such
measurements can be valuable to developers, educators, re-
searchers, and standards bodies alike, who can adapt their
applications, teachings, and optimization and standardiza-
tion efforts toward the new or changed abstractions.

We present the first study of POSIX usage in modern
OSes focusing on three of today’s most widely used mobile
and desktop OSes – Android, OS X, and Ubuntu – and
popular consumer applications characteristic to these OSes.
We built a utility, called libtrack, that supports both dynamic
and static analyses of POSIX use in applications. Dynamic
analyses give us detailed and precise POSIX usage patterns,
but can only be run at limited scale (e.g., tens of popular
applications for each OS). Static analyses let us generalize
trends at large scale (e.g., 1.1M applications in our Android
study), but conclusions are less precise. Our study sheds
light into a number of important questions regarding the use
of POSIX abstractions in modern OSes, including: which
abstractions work well; which appear to be used in ways for
which they were never intended; which are being replaced by
new and non-standard abstractions; and whether the standard
is missing any fundamental abstractions needed by modern
workloads. Our findings can be summarized as follows:

First, usage is driven by high-level frameworks, which
impacts POSIX’s portability goals. The original goal of the



POSIX standard was application source code portability.
However, modern applications are no longer being writ-
ten to standardized POSIX interfaces. Instead, they rely
on platform-specific frameworks and libraries that lever-
age high-level abstractions for inter-process communication
(IPC), thread pool management, relational databases, and
graphics support. These frameworks and libraries are of-
ten implemented using underlying standard POSIX APIs,
but are also free to depart from POSIX and use OS-specific
interfaces. Thus, instead of the POSIX API serving as the
interface between applications and the OS environment,
modern OSes – such as Ubuntu, Android, and OS X– pro-
vide a more layered programming model with “taller” in-
terfaces. Applications directly link against high-level frame-
works, which invoke other frameworks and libraries that
may eventually utilize POSIX. This new, layered program-
ming model imposes challenges with respect to applica-
tion portability, and has given rise to many different cross-
platform SDKs [2, 9, 22, 24, 39] that attempt to fill the gap
left by a standard which has not evolved with the rest of
the ecosystem. However, these cross-platform SDKs are of-
ten challenging to develop and maintain up-to-date with OS
changes.

Second, extension APIs, namely ioctl, dominate mod-
ern POSIX usage patterns as OS developers resort to them
to build support for abstractions missing from the POSIX
standard. Extension APIs have become the standard way
for developers to circumvent POSIX limitations and facili-
tate hardware-supported, high-level functionality for graph-
ics, sound, and IPC. For example, the ioctl interface is now
regularly used to mediate complex graphics commands be-
tween the high-level OpenGL library and the graphics driver.

Third, new abstractions are arising driven by the same
POSIX limitations across the three OSes, but the new ab-
stractions are not converging. To deal with abstractions
missing from the aging POSIX standard, modern OSes are
implementing new abstractions to support higher-level ap-
plication functionality. Although these interfaces and ab-
stractions are driven by similar POSIX limitations and are
conceptually similar across OSes, they are not converging
on any new standard. Traditional POSIX threading models,
IPC interfaces, and file system access are being replaced by
platform and vendor-specific APIs and frameworks such as
Grand Central Dispatch [18], Binder [29], DBus [25], and
SQLite [1].

We believe that our findings have broad implications re-
lated to the future of POSIX-compliant OS portability, which
the systems research community and standards bodies will
likely need to address in the future. To support further stud-
ies across a richer set of UNIX-based OSes and workloads,
which we anticipate will be needed to establish a rigorous
course of action, we make the libtrack source code, along
with the application workloads and traces, available at:

https://columbia.github.io/libtrack/

This paper is organized as follows. Section 2 presents two
motivating examples for our study and formulates our goals.
Sections 3 and 4 give background and detail our study’s
methodology. Section 5 presents our measurement results.
Sections 6 and 7 discuss the broader implications of our
findings in the context of related work and in general.

2. Motivation
Motivating Examples. Our measurement study is motivated
by our experience building two very different systems –
an Android data protection system called Pebbles [52] and
an Android/iOS binary compatibility system, called Cycada
(formerly known as Cider) [7] – whose designs exposed, and
were drastically impacted by, the changes in the ways appli-
cations on these platforms are using system abstractions.
• Pebbles [52] provides data protection at the level of

application-level objects, such as emails or bank accounts.
This level of protection is made possible by the new ways in
which Android applications use storage abstractions. Rather
than using traditional unstructured POSIX file system ab-
stractions, Android applications instead store data almost
exclusively in highly structured storage (SQLite). In Peb-
bles, we leverage this structured information to transparently
and accurately reconstruct application-level objects so the
OS can provide protection at their level. Without applica-
tions’ almost exclusive reliance on structured storage, Peb-
bles would likely not be possible.
• Cycada [7] is a binary compatibility framework for An-

droid and iOS applications. Given that both Android and
iOS implement similar POSIX functionality, we initially
thought that building Cycada would be relatively straight-
forward compared to previous Windows-UNIX compatibil-
ity efforts. However, achieving compatibility even between
Android and iOS turned out to be a herculean task. A main
obstacle was the extensive use of POSIX’s ioctl exten-
sion API, which is highly platform-specific and loosely de-
fined. To address this challenge, we elevated the level of
abstraction at which we constructed binary compatibility
from POSIX to newer, high-level abstractions used by ap-
plications, such as graphics and sound libraries. With this
approach, and intuitively assuming that most applications
leverage these abstractions, we were able to translate be-
tween well-defined interfaces and run unmodified iOS ap-
plications on Android.

Our experience with these systems led to anecdotal ob-
servations about changes in how modern applications use
specific system abstractions. Other prior studies also sug-
gest an evolution of specific POSIX abstractions [30, 58].
However, no prior work offers a rigorous characterization of
these changes across the broad range of system abstractions
standardized in POSIX and across multiple OSes.
Study Goals. Our goal in this study is to offer a rigorous
characterization of how standardized system abstractions are
being used by modern workloads, and whether they are

https://columbia.github.io/libtrack/


being replaced by other abstractions. Broadly speaking, we
are interested in questions such as:

• Which POSIX abstractions are still being used and rele-
vant for today’s application workloads?

• Which abstractions are being replaced by new and non-
standard abstractions?

• Are there any specific limitations of traditional abstrac-
tions that motivate these transitions?

• Are the replacement abstractions similar in the various
OSes, or are the abstractions diverging?

• Are there any blatantly missing abstractions in POSIX,
which modern workloads appear to require? If so, how
are the gaps currently being filled?

• Are any traditional abstractions being used in ways for
which they were not intended? If so, what are the perfor-
mance or security implications of these uses?

We believe that the answers to these questions are rel-
evant to a wide audience, including: researchers, who can
design and optimize their systems by leveraging current,
broadly applicable trends in application workloads, as illus-
trated by the preceding motivating examples; application de-
velopers, who may take advantage of new and more power-
ful abstractions available in modern OSes; standard bodies,
such as OpenGroup, who may wish to reconsider certain,
obsolete aspects of their standard in light of the new trends;
and educators, who may wish to refresh their courses with
coverage of the new, prominent OS abstractions that are re-
placing traditional ones [8].
Study Scope. We answer the preceding questions in the
context of three popular, consumer-oriented OSes and work-
loads: Android 4.3 Jellybean, OS X 10.10.5 Yosemite, and
Ubuntu 12.04 Precise Pangolin. Our OS choices stems not
only from their popularity, but also from their diversity: An-
droid is a relatively new, mobile OS; OS X is a desktop
OS that hosts a large corpus of modern applications; and
Ubuntu is a more traditional desktop OS, offering us a base-
line to study evolution of abstractions. As workloads, we
use real applications downloaded from the corresponding
consumer-oriented repositories or app markets (Section 4.2).
For a more complete view of POSIX’s state, this study could
be extended to other types of workloads, including server-
side, embedded, and high-performance computing work-
loads. Our consumer-oriented study establishes the neces-
sary tools, methodologies, questions, and initial answers to
support such broader studies in the future. Our public release
of tools and workloads facilitates such future studies.

3. POSIX Background
POSIX refers to a family of standards maintained by the

Austin Group [53]. This family of standards describes a set
of fundamental services needed for portable application de-
velopment in UNIX-based OSes [32]. The latest POSIX re-

Revision Brief Description

POSIX.1-1990 Initial release including core services.

POSIX.2-1992 Describing commands and utilities.

POSIX.1b-1993 Describing real-time facilities.

POSIX.1c-1995 Describing POSIX threads interface.

POSIX.1-1996 Composed of POSIX.1-1990,POSIX.1b, and
POSIX.1c.

POSIX.1d-1999 Describing additional real-time extensions.

POSIX.1g-2000 Describing networking APIs (including sockets).

POSIX.1j-2000 Describing advanced real-time extensions.

POSIX.1q-2000 Describing tracing extensions.

POSIX.1-2001 Composed of POSIX.1-1996, POSIX.2, SUSv2,
POSIX.1d, POSIX.1g, and POSIX.1j.

POSIX.1-2004 Incorporated two technical corrigendum in
POSIX.1-2001 fixing issues related to base def-
initions.

POSIX.1-2008 Adding remaining parts of POSIX.1-2001

POSIX.1-2013 Incorporating one technical corrigenda in
POSIX.1-2008 fixing issues related to base
definitions.

Table 1: POSIX revisions. Lists all major revisions and a brief
description of each amendment.

vision, published in 2013 [56], differs only marginally from
the first drafts of the standard, published in the late 80’s
and early 90’s. It covers topics such as directory structure,
command-line interpreters and utilities, environment vari-
ables, and system service functions and subroutines. Table 1
lists all major POSIX revisions with a short description of
each, according to the Austin Open Group [53] and C/UNIX
standards defined in the GNU/Linux manual.

POSIX defines 1,177 C functions and 14 global vari-
ables [56] that are intended to facilitate application porta-
bility at the source code level, and to codify a fundamental
set of OS abstractions. The OpenGroup collates these APIs
into 6 broad categories shown in [57]. These categories are:
signals, streams, IPC, realtime, threads, and sockets. Not all
of these functions are related to OS services (system calls).
For example, on Android, of the 821 POSIX functions im-
plemented, only 343 are related to system calls implemented
by Linux kernel that Android is built on. The rest are util-
ity functions fully implemented in user-space (e.g., memcpy,
strlen, and atoi).

We focus our measurements on the system service func-
tions and subroutines which are specified using the C pro-
gramming language. We refine the official POSIX API clas-
sification into 14 more fine-grained categories. These cate-
gories provide meaningful insights into the types of func-
tionality defined by POSIX, and aid our analysis of the
evolution of these abstractions. Table 3 lists these cate-
gories, examples of prominent functions in each category,
and the total number of interfaces implemented by various
OSes. In Section 5.1, we discuss in detail the POSIX im-



plementations in bionic libc (Android), glibc (Ubuntu),
and libSystem.dylib (a collection of constituent OS X
libraries).

4. Methodology
Our study involves two types of experiments with real,

client-side applications on the three OSes: dynamic experi-
ments and static analysis. Dynamic experiments let us obtain
detailed and precise POSIX usage patterns, but we can only
run them at limited scale (e.g., 45 popular applications in
our Android study). Static analysis lets us generalize trends
at large scale (e.g., 1.1M applications in our Android study),
but conclusions are not as precise.

In support of these studies, we developed libtrack, a tool
that traces the use of a given native C library from modern
applications. While libtrack is general and can trace the us-
age of arbitrary native libraries, in this paper we exclusively
use it to track POSIX C standard library implementations in
the OSes we study. libtrack implements two modules: (1) a
dynamic module, which collects and analyzes traces of calls
to a given C standard library produced by running applica-
tions; and (2) a static module, which analyzes arbitrary na-
tive libraries and binaries for links (i.e., dynamic relocations)
to the given C standard library. Section 4.1 describes our lib-
track implementation and Section 4.2 details our methodol-
ogy of using it.

4.1 libtrack
Dynamic Module. libtrack’s dynamic module traces all in-
vocations of native POSIX functions for every thread in the
system. At a high level, for each POSIX function imple-
mented in the C standard library of the OS, libtrack inter-
poses a special “wrapper” function with the same name.
Then, once a native POSIX function is called, libtrack logs
the time of the invocation and a backtrace identifying the
path by which the application invoked the POSIX function.
It also measures the time spent executing the POSIX func-
tion, excluding any time spent in our wrapper function. lib-
track then analyzes these traces to construct a call graph and
derive statistics and measurements of POSIX API usage.

Interposing on libc calls (a particular example of a C
POSIX standard library) is challenging, especially when
support from libc is required to perform the tracking and
logging functionality. We wished to run our experiments on
actual user devices; this precluded the use of x86 dynamic
instrumentation tools like PIN [33]. To trace libc invoca-
tions, along with their parameters and stack traces, libtrack
interposes wrapper stubs that invoke the functions exported
by libc. Several steps are involved:
• Step 1: libtrack gathers a list of all libc entry points

exported in the symbol table for dynamic linking and their
offsets within the “TEXT” segment of the original libc li-
brary. For each of these functions, libtrack takes advantage
of ELF visibility attributes and marks each symbol’s visibil-
ity as “HIDDEN” to avoid recursion (explained in Step 4).

• Step 2: With each function now hidden in the original
libc, it is impossible to use dlsym to dynamically load
them. Thus, libtrack creates a static lookup table that maps
symbol names to offsets, using the data gathered in Step 1.
• Step 3: For each libc function, libtrack creates a wrap-

per stub function, which uses dlopen to ensure that the
original libc has been loaded, and then invokes the lookup
function created in Step 2. Using the offset returned by the
lookup function, the wrapper stub can easily invoke the orig-
inal libc function. The collection of these wrapper stubs
will be compiled into a replacement, or wrapped libc.
• Step 4: Many libc functions require globally visible

data symbols, such as environ. In order to avoid duplicat-
ing these symbols, libtrack ensures that the original libc
library is loaded by the dynamic linker prior to any other li-
brary in the system. This is done through the LD PRELOAD

environment variable used by the statically linked init bi-
nary. Because all the function symbols were hidden in Step
1, dynamically linked binaries will find libc functions in
the wrapped libc generated by libtrack, but will use data
symbols from the original, preloaded libc.
• Step 5: A single tracing function in the wrapped libc

can be used by each libc wrapper stub. The stub function
can pass the symbol name, arguments, and a pointer to the
original libc function to the tracing function. The tracing
function can dynamically use libc functionality through the
lookup table generated in Step 2. By replacing the original
libc with a wrapped version created by libtrack, we can
track all invocations of POSIX functions by every thread of
every application dynamically linking to libc.
Static Module. libtrack also contains a static module, which
is a simple utility to help identify application linkage to
POSIX functions of C standard libraries. Given a reposi-
tory of Android APKs or a repository of Ubuntu packages,
libtrack’s static module first searches each APK or package
for native libraries. Then, it decompiles native libraries and
scans the dynamic symbol tables for relocations to POSIX
symbols. Dynamic links to POSIX APIs are indexed per ap-
plication (or per package), and are finally merged to produce
aggregate statistics of POSIX linkage on a repository of An-
droid APKs (or on a repository of Ubuntu packages).
Tracing Limitations. There were significant challenges in
attempting to trace the full POSIX in both the static and dy-
namic studies across multiple OSes. This motivated us to
constrain tracing to subsets of POSIX in each OS and for
each study type. We give complete listings of the functions
we trace for each setting at https://columbia.github.
io/libtrack/limitations and only overview the omis-
sions here.
• For the static study we trace: 790 out of 821 C POSIX

functions implemented in Android; 1,085 out of 1,115 C
POSIX functions implemented in Ubuntu; and we do not
run static analysis studies on OS X due to the lack of a large-
scale snapshot of the Mac App Store, as noted in Section 4.2.

https://columbia.github.io/libtrack/limitations
https://columbia.github.io/libtrack/limitations


The only functions we omitted from the static studies were
those defined as preprocessor macros and static inlines (31
functions in Android and 30 in Ubuntu), which are not ex-
ported in the symbol tables hence they cannot be discovered
by libtrack. Examples include htons, FD SET, and va arg.
None of our conclusions about unused POSIX functions re-
fer to these functions, therefore these omissions have no ef-
fect on our static studies.
• For the dynamic study we trace: 372 out of the 821 C

POSIX functions implemented in Android; 462 out of the
1,115 C POSIX functions implemented in Ubuntu; and 897
out of the 1,177 C POSIX functions implemented in OS
X. In addition to omitting functions defined as preprocessor
macros and static inlines, we omitted functions that were too
expensive to trace dynamically because they were invoked
too frequently, or were user-space only utility functions that
did not make use of OS facilities. The tracing cost was par-
ticularly an issue in the context of Android on a resource-
constrained tablet device. For Android and Ubuntu, these
functions were all string and math-related utility functions,
and pthread locking functions (e.g., pthread mutex lock).
For Ubuntu only, we omitted some additional user-space
only functions on which libtrack failed due to implemen-
tation limitations (e.g., basename, sigsetjmp). For OS X,
we were able to trace string and math-related utility func-
tions but had to omit some file system and IPC functions
(e.g., openat, mq open) due to implementation limitations
of our tool. On each OS, most of the omitted functions (93%
for Android, 91% for Ubuntu, and 74% for OS X) are user-
space utilities, and not system functions, hence we do not
believe that their omission has significant qualitative impact
on our dynamic studies.

4.2 Workloads
Using libtrack, we perform both dynamic and static ex-

periments. We use different workloads for each experiment
type, which we describe in this section. All workloads are
centered around consumer-oriented applications and do not
reflect POSIX’s standing in other types of workloads, such
as server-side or high-performance computing workloads,
as noted in Section 2. Our conclusions must therefore be
viewed in light of this limitation.
Dynamic experiments. We drive dynamic experiments by
interacting with popular Android, OS X, and Ubuntu appli-
cations (apps). We select apps from the official market places
for each OS: Google Play (45 apps), Apple AppStore (10
apps), and Ubuntu Software Center (45 apps). We choose
apps based on the number of installs across nine categories,
selecting 5 apps from each category: social, productivity,
games, communication, music, video, travel, shopping, and
photography. We interact manually with these applications
by performing typical operations, such as refreshing an in-
box or sending an email with an email application. Table 2
shows a few examples of applications from our Android
dataset, along with examples of actions we perform on them.

Category Application Installs Operations

Social
Facebook 500M-1000M post, check-in, chat

Twitter 100-500M tweet, follow, favorite

Productivity
Dropbox 100-500M upload, share files

Adobe 100-500M open, edit files

Games
Angry Birds 100-500M play 3 minutes

Candy Crush 100-500M play 3 minutes

Communication
Skype 100-500M video call, chat

Chrome 100-500M browse, bookmark

Music, Audio
Shazam 100-500M search songs, lyrics

Pandora 100-500M listen, rate songs

Media, Video
Youtube 500M-1000M browse, watch videos

Google Movies 100-500M watch trailers, rate

Travel, Location
Maps 500M-1000M query locations

Google Earth 50-100M search location

Shopping
Groupon 10-50M search, start deals

Amazon 10-50M search, add items

Photography
PhotoGrid 10-50M crop pics, create grid

Aviary 10-50M add effects to pictures

Total: 45 popular applications across 9 categories (5 apps per category).

Table 2: Android applications and sample workloads. Applica-
tions were chosen based on Google Play popularity.

For the Android, OS X, and Ubuntu studies, we use the fol-
lowing devices: ASUS Nexus-7 tablet with stock Android
4.3 Jelly Bean ROM; MacBook Air laptop (4-core Intel CPU
@2.0 GHz, 4GB RAM) running OS X Yosemite; and Dell
XPS laptop (4-core Intel CPU @1.7GHz, 8GB RAM) run-
ning Ubuntu 12.04 Precise Pangolin.
Static experiments. We drive static experiments of POSIX
usage at large scale by downloading over a million consumer
applications and checking these applications, and associated
libraries, for linkage to POSIX functions of C standard li-
braries. For Android, we download 1.1 million free Android
apps from a Dec. 4, 2014 snapshot of Google Play [59] avail-
able on the Internet Archive [34]. For Ubuntu, we down-
load 71,199 packages available for Ubuntu 12.04 on Dec.
4, 2014, using aptitude package manager with the sources
list installed in our university’s cluster. We do not run static
experiments for OS X apps because no large-scale snapshot
of the Mac App Store is currently available. Our static ex-
periments focus on measuring linkage of POSIX functions
implemented in C standard libraries; static analysis of Java
libraries (e.g., for Android apps) or other types of libraries is
outside our scope.

5. Results
We organize the results from our study in a sequence of

questions akin to those in Section 2. The answer to each
question informs the investigation of the subsequent ques-
tion. We begin with an initial question of which POSIX func-
tions and abstraction families are being used and which are
not being used by modern workloads.
5.1 Which Abstractions Are Used and Which Are Not

Used by Modern Workloads?
To answer this question, we run a series of investigations

using results from different kinds of experiments. First, we
examine which abstractions are implemented and which are



Category Funcs Android OS X Ubuntu Example Category
(cont’ed)

Funcs Android OS X Ubuntu Example

Algorithms 12 5 12 12 bsearch Proc. / Signals 98 67 98 98 fork,
sigaction

Args 19 7 19 19 uname Strings 200 127 200 200 strlen,
strcmp

Extensions 1 1 1 1 ioctl Terminals 21 19 21 21 isatty

File Systems 180 138 180 172 fopen,fread Threads 102 69 102 102 pthread create

IPC 34 11 34 34 pipe Time / Date 29 27 29 29 time

Math 285 242 285 285 srand, logf Users / Groups 32 18 32 32 getuid,getgid

Memory 28 23 28 25 [cm]alloc Misc 80 23 80 29 sysconf

Network 56 44 56 56 send, recv

POSIX: 1,177 functions; Android: 821 functions (69.7%); OS X: 1,177 functions (100%); Ubuntu: 1,115 functions (94.7%).

Table 3: POSIX compliance of modern OSes. Modern OSes are not fully POSIX compliant.

not in the three OSes under investigation (Android, OS X,
and Ubuntu); this will tell us in a definite manner which ab-
stractions are truly omitted by various OS implementations.
Second, we use our static analysis of 1.1M apps and pack-
ages on Android and Ubuntu to examine which of the im-
plemented abstractions are actually linked by applications
or their libraries; this will give us a more accurate view into
what abstractions are not used by modern workloads. Third,
we use results from our dynamic experiments with 45 popu-
lar Android apps, 10 OS X apps, and 45 Ubuntu apps, to ex-
amine what abstractions are effectively invoked by modern
workloads; this will tell us what the popular POSIX abstrac-
tions are.
Implemented Abstractions. Table 3 shows the categories,
or abstraction subsystems, of POSIX functions implemented
in the standard libraries of different OSes. We analyze the
following libraries: bionic libc for Android (the first ver-
sion available on Android 4.3), glibc for Ubuntu (version
2.13), and libSystem for OS X (version 1213). Android’s
and Ubuntu’s implementations are incomplete: of the 1,177
POSIX functions, Android implements 821 (69.7%) and
Ubuntu implements 1,115 (94.7%). In contrast, OS X im-
plements the complete set of POSIX interfaces. We give a
synoptic per-subsystem analysis of the POSIX implementa-
tions, focusing on the omissions:
• IPC: Android implements only a small subset (32%) of

the POSIX IPC functions; it is the single, lowest-coverage
subsystem in the Android implementation. It partially im-
plements two traditional abstractions: pipes and semaphores;
and it omits all functions related to shared memory and mes-
sage queues. The reason for these omissions, discussed in
detail later, is that Android replaces traditional IPC abstrac-
tions in favor of newer, platform-specific IPC abstractions.
Although OS X and Ubuntu also come with their own IPC
abstractions, these OSes implement the complete POSIX
IPC subsystem.
• FS: Android implements 76% of the FS POSIX sub-

system, while OS X and Ubuntu cover the entire subsystem.
Android omits in particular all of POSIX’s asynchronous
I/O functions (aio *) and database support functions (e.g.,

dbm *). This may appear surprising given that the Android
OS explicitly pushes toward asynchrony and structured stor-
age [4, 5]. As we show later on, Android departs from
POSIX interfaces for such functionality and develops its
own abstractions for asynchrony and structured storage.
• Threads: Android implements 67% of threading in-

terfaces, omitting for example pthread barrier* and
pthread spin* utilities, and partially omitting pthread -

mutexatr* utilities. OS X and Ubuntu implement the com-
plete threading subsystem.
•Memory: All OSes largely implement the memory sub-

system, with one exception: neither Android nor Ubuntu
implement typed memory objects. POSIX typed memory
objects are being substituted by new memory sharing and
memory mapped files schemas.
• Other: Neither Android nor Ubuntu implement the

POSIX tracing standard. Since tracing functionality required
for debugging and logging is vital for the ecosystem of mod-
ern applications, a plethora of tools exist (e.g., [3, 11, 28])
that go beyond the capabilities of POSIX tracing subsystem.

Overall, the omission of some core POSIX interfaces in
modern OSes, and the phasing out of traditional IPC, async
I/O, and DB calls in Android, provide us with initial insights
into which POSIX abstractions are exhibiting limitations or
are unnecessary for modern workloads. We investigate the
forces driving these transitions in subsequent sections.
Linked Abstractions. We next examine which of the imple-
mented POSIX functions are actually ever linked (and there-
fore potentially used) by modern applications. Contrary to
the previous section, our results in this section do not cap-
ture 31 Android and 30 Ubuntu C POSIX functions defined
as preprocessor macros and static inlines, a limitation ex-
plained earlier in Section 4.1. Figure 1 shows the number
of Ubuntu packages and Android applications that dynam-
ically link to POSIX functions of the respective C standard
libraries. The results come from our large-scale static studies
of (a) 1.1 million Android apps downloaded from the Inter-
net’s Archive Dec. 4, 2014 snapshot of Google Play; and
(b) 71,199 packages available for Ubuntu 12.04, using ap-
titude package manager with the sources list maintained in
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Figure 1: POSIX function linkage (logscale both axis). Static
analysis of (a) 374,463 Android apps with native libs and (b) 17,989
Ubuntu packages. Only a fraction of POSIX functions are ever
linked.

our university’s cluster. For OS X, we have not run this type
of analysis. Recall that, as stated earlier in 4.2, our static
experiments account only for linkage to native C standard li-
braries and analysis of other types of libraries (e.g., Java for
Android) is outside the scope of our experiments.

Overall, in Android, of the 821 POSIX functions imple-
mented, 114 of them are never dynamically linked from any
native library, and approximately half (364 functions) are dy-
namically linked from 1% or fewer of the apps. Furthermore,
our static analysis of Ubuntu packages shows that desktop
Linux has a similar, albeit less definitive, trend with An-
droid: phasing out traditional IPC and FS POSIX abstrac-
tions. Focusing on a few rarely linked subsystems that are of
particular relevance for subsequent discussions, we remark:
• IPC: In Android, we observe particularly low linkage

for named pipe functions (mkfifo). This decreases the al-
ready narrow POSIX IPC support in Android. Similarly, in
Ubuntu, we observe that message queues (mq*) – a set of ab-
stractions not implemented in Android – are being linked by
less than 0.3% of Ubuntu packages.
• FS: In Android, we observe that file lock functions are

extremely rarely linked: flockfile and funlockfile are
linked from only 0.7% of the apps. Also, async I/O calls
(aio* not implemented in Android) are being linked by less
than 0.1% of Ubuntu packages.
Dynamically Invoked Abstractions. Although linkage is a
definite way to identify unused functions, it is only a spec-
ulative way to infer usage. Therefore, we next examine the
actual usage of POSIX functions by quantifying runtime in-

vocations from our dynamic experiments described in Sec-
tion 4.2. Table 4 shows the top 30 most frequently invoked
POSIX calls, along with the CPU times dedicated to execut-
ing these functions across the apps studied in each OS. The
results are normalized separately on each OS and the calls
are sorted in descending order.
• Memory: The memory subsystem contains some of the

most heavily invoked functions, many of which are among
the top-10 across all OSes. User-space utilities for memory
handling (e.g., memset, memcpy, and memcmp) and system-
call backed POSIX calls for (de)allocation of memory arenas
(i.e., [cm]alloc and free) are the most popular interfaces
of this subsystem. Also, the function mprotect is ranked
14th in Android. This function is usually invoked with ar-
gument PROT READ | PROT EXEC to set up a not-writable
JIT compiler cache. This cache, as evidenced in our stack
traces, is then utilized via setjmp (ranked 27th in Android).
The memory subsystem is also among the most expensive
subsystems in terms of CPU consumption of its invocations,
as discussed further in Section 5.2. This popularity and cost
of memory calls are due to the proliferation of high-level
frameworks across all OSes [6, 14, 54] and high-level pro-
gramming languages [10, 12].
• Threads: POSIX user-space threads are also very pop-

ular across all OSes. In Android and OS X, Thread Local
Storage (TLS) operations are extensively used. pthread -

getspecific, a function that retrieves the value bound to
a TLS key, is the second most popular call in Android and
OS X. This user-space routine is used to retrieve TLS keys
that help applications map between high-level threads and
low-level native pthreads. In Ubuntu, conditional variables
are heavily used (e.g., pthread cond signal range). The
ubiquity of threading operations is again due to high-level
frameworks and programming languages, which make ex-
tensive use of multi-threading, particularly to obtain asyn-
chrony, as shown in Section 5.5.
• IPC We observe across all three OSes that no POSIX

calls belonging to traditional POSIX IPC are among the fre-
quently invoked operations. As discussed earlier, Android
departs from the traditional IPC in favor of higher-level IPC
abstractions, namely Binder, the core Android message pass-
ing system. Similarly, OS X supports higher-level IPC primi-
tives built atop Mach IPC, which diverged from POSIX since
its inception. Finally, Ubuntu also provides applications with
message passing capabilities based on D-Bus.
• FS: Similarly to IPC, FS abstractions are invoked, but

are not comparatively as popular in terms of invocations.
More important, most an analysis of the stack traces of
these calls reveals that most of the FS invocations, such
as file read and write, mainly serve higher-level storage
abstractions, such as SQLite in Android and CoreData in OS
X. The rationale behind this departure from the traditional
FS (and IPC) primitives in favor of higher-level abstractions
is further described in subsequent sections.



Popular POSIX interface in Android
POSIX function Invocations Time
memset 25% (66.0M) 14% (100s)
pthr getspec 20% (52.8M) 12% (81.5s)
memcpy 20% (52.1M) 13% (87.8s)
free 9% (24.9M) 8% (57.7s)
malloc 8% (20.9M) 9% (61.1s)
pthr self 3% (10.1M) 0% (0.0s)
memcmp 3% (8.6M) 2% (16.3s)
memmove 1% (3.6M) 1% (6.8s)
clock gettime 1% (3.3M) 0% (0.0s)
realloc 0.8% (2.1M) 1% (8.0s)
pthr once 0.6% (1.7M) 0.7% (4.6s)
gettimeofday 0.5% (1.4M) 0.6% (4.2s)
ioctl 0.5% (1.3M) 16% (108s)
mprotect 0.4% (1.1M) 3% (26.1s)
fread 0.4% (1.0M) 0.8% (5.3s)
write 0.4% (926K) 2% (16.1s)
pthr cond sig 0.3% (697K) 0.7% (4.9s)
memchr 0.3% (686K) 0.6% (3.9s)
pthr cond brd 0.2% (608K) 0.6% (4.0s)
getpid 0.2% (593K) 0.2% (1.6s)
bsearch 0.2% (493K) 0.2% (1.5s)
pth mtx destr 0.2% (455K) 0.1% (0.4s)
calloc 0.2% (393K) 0.2% (1.3s)
getuid 0.2% (393K) 0.1% (1.0s)
recv 0.1% (367K) 0.9% (6.1s)
fclose 0.1% (298K) 0.1% (0.6s)
setjmp 0.1% (287K) 0.3% (1.9s)
pthr mtx init 0.1% (275K) 0.1% (0.4s)
read 0.1% (234K) 0.9% (5.8s)
pthr equal 0.1% (183K) 0.1% (0.4s)
Total: 259.6M 674.7s

Popular POSIX interface in OS X
POSIX function Invocations Time
malloc 27% (6.9M) 36% (31.7s)
pthr getspec 19% (4.9M) 7% (6.2s)
calloc 18% (4.6M) 30% (26.7s)
pthr self 11% (3.0M) 4% (3.7s)
pthr equal 11% (2.9M) 3% (3.5s)
pthr once 5% (1.4M) 2% (1.9s)
gettimeofday 1% (386K) 2% (1.8s)
realloc 1.0% (250K) 2% (2.1s)
bsearch 1.0% (242K) 2% (2.1s)
memcpy 0.5% (115K) 0.3% (0.3s)
pthr mattrset 0.4% (94K) 0.2% (0.2s)
pthr mattrinit 0.4% (94K) 0.2% (0.2s)
pthr mattrdest 0.4% (92K) 0.2% (0.2s)
pthr setspec 0.3% (65K) 0.1% (0.1s)
getenv 0.1% (31K) 0.1% (0.1s)
recv 0.1% (29K) 0.1% (0.0s)
send 0.1% (29K) 0.1% (0.0s)
nanosleep 0.1% (16K) 0.8% (0.7s)
fcntl 0.1% (16K) 0.1% (0.1s)
fgets 0.1% (16K) 0.3% (0.2s)
mmap 0.1% (14K) 0.4% (0.3s)
munmap 0.1% (12K) 0.2% (0.1s)
qsort 0.1% (11K) 0.1% (.0s)
geteuid 0.1% (11K) 0.1% (.0s)
setjmp 0.1% (10K) 0.1% (.0s)
read 0.1% (9K) 0.2% (0.2s)
pread 0.1% (7K) 0.1% (0.1s)
close 0.1% (6K) 0.2% (0.2s)
write 0.1% (6K) 0.1% (0.1s)
getuid 0.1% (2K) 0.1% (0.0s)
Total: 25M 87s

Popular POSIX interface in Ubuntu
POSIX function Invocations Time
memcpy 24% (23.7M) 17% (9.7s)
free 20% (19.1M) 14% (8.2s)
malloc 18% (17.3M) 16% (9.0s)
memcmp 6% (6.1M) 3% (2.2s)
memmove 4% (4.8M) 3% (2.0s)
memset 4% (4.6M) 3% (2.1s)
realloc 3% (3.5M) 3% (2.1s)
calloc 2% (2.8M) 3% (1.7s)
gettimeofday 1% (1.3M) 0% (0.0s)
pthr cnd sig 0.9% (869K) 3% (1.7s)
pthr cnd twait 0.8% (801K) 0.0% (0.0s)
getpid 0.8% (767K) 0.7% (0.4s)
pthr cnd brd 0.8% (748K) 0.7% (0.4s)
pthr equal 0.8% (735K) 0.4% (0.2s)
sched yield 0.8% (725K) 0.0% (0.0s)
ffs 0.7% (679K) 0.5% (0.3s)
read 0.7% (643K) 1% (1.1s)
nanosleep 0.6% (603K) 0.0% (0.0s)
poll 0.6% (602K) 3% (1.8s)
memchr 0.6% (584K) 0.4% (0.2s)
fread 0.6% (532K) 0.5% (0.3s)
ioctl 0.4% (425K) 0.7% (0.4s)
recvmsg 0.4% (386K) 3% (1.7s)
fgets 0.3% (320K) 0.3% (0.2s)
write 0.3% (276K) 0.9% (0.5s)
recv 0.3% (272K) 1% (0.6s)
send 0.2% (231K) 2% (1.4s)
pthr cnd wait 0.2% (200K) 0.0% (.0s)
sem wait 0.2% (179K) 0.0% (.0s)
select 0.2% (160K) 0.9% (0.5s)
Total: 95M 56s

Table 4: Popular POSIX Interfaces in Android, OS X, and Ubuntu. Shows which POSIX functions are popular across the three OSes,
the frequncy of their invocations, and the total CPU time dedicated into executing these functions. The results are sorted in descending order
of number of invocations, normalized separately in each OS. We perform our expriments using the following devices: ASUS Nexus-7 tablet
with stock Android 4.3 Jelly Bean ROM; MacBook Air laptop (4-core Intel CPU @2.0 GHz, 4GB RAM) running OS X Yosemite; and Dell
XPS laptop (4-core Intel CPU @1.7GHz, 8GB RAM) running Ubuntu 12.04.

• Other: Other heavily invoked POSIX calls belong to
the Time POSIX subsystem. For example, gettimeofday is
ranked 12th in Android, 7th in OS X, and 9th in Ubuntu. This
system call is essential for implementing timers to support
periodic tasks, such as garbage collection.
• Extension APIs (ioctl): Finally, we observe the unex-

pected popularity of ioctl, an extension API that lets ap-
plications and libraries bypass well-defined abstractions and
interact directly with the kernel. ioctl is the 13th most fre-
quently invoked function in Android, the 23rd in Ubuntu,
and 42nd most popular function in OS X. ioctl also comes
with considerable CPU cost. On Android, it is the POSIX
call that consumes the most CPU, 16% of the total CPU time
dedicated to POSIX calls. This observation surprised us, and
motivated us to investigate further why this particular call is
being used so frequently, and why it is so expensive.

5.2 Why Is IOCTL Invoked So Often?
ioctl invocations are surprisingly popular and expensive

across all three OSes. In Android, ioctl is the 13th most
frequently invoked POSIX function and the single most ex-
pensive function in CPU time. In OS X, it is the 42nd most
invoked function and the 14th most expensive one. And in

Ubuntu it is the 23nd most invoked function and the 22nd
most expensive one. In this section, we reveal why it is in-
voked so often and why it consumes so much CPU. We start
with a more in-depth profiling of invocations and CPU con-
sumption of various POSIX subsystems (abstractions).

Figure 2 shows the profiling results for the 45 Android
applications in our workload. For each application, it shows
the breakdown of POSIX invocations (top) and of total CPU
time (bottom), split on various POSIX subsystems. The re-
sults are normalized separately for each application, and
the total invocations and CPU time are shown above each
set of bars. In general, more complicated apps lead to a
higher number of hits on the POSIX API. Some of the apps
with particularly high numbers of total invocations include
Google Earth, Google Chrome, and Twitter. Memory and
threading POSIX subsystems account for the vast major-
ity of POSIX invocations across all applications (top). In
comparison to these two subsystems, ioctl’s invocations
are much fewer, however they are hardly negligible partic-
ularly if one looks at the CPU times breakdowns (bottom).
In CPU consumption, ioctl becomes one of the most ex-
pensive component in POSIX, even compared to entire sub-
systems. Games, Media & Video, and Photography apps in-
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Figure 2: Distribution of POSIX Invocations and CPU Consumption for Various Subsystems. Shows the distribution of POSIX
invocations (top subfigure) and CPU consumption (bottom subfigure) for various subsystems, across 45 popular Android applications with
which we interact using an ASUS Nexus-7 tablet with stock Android 4.3 Jelly Bean ROM. The results are normalized per application, and
the totals appear on top of each set of bars in millions of invocations and seconds respectively. Notably, ioctl has a high CPU consumption
across most apps, although it is not very popular in terms of invocations.

volve ioctl operations with the largest proportional cost.
Aside from ioctl, the memory subsystem is also a major
CPU consumer, in accordance to its popularity.

To understand why ioctl is so expensive, we look at the
distribution of CPU times for individual ioctl invocations
across applications in each OS. In Android, we found that
ioctl calls range from nanoseconds up to milliseconds,
with an average of 67 usec and a standard deviation (stdev)
of 347 usec. On average, ioctl is relatively expensive,
compared to a global average of 2 usec per POSIX call
and even to a global average of 10 usec per system-call-
backed POSIX call. In OS X, the average ioctl cost is 513
usec with a standard deviation of 8 usec, and in Ubuntu the
average ioctl cost is 922 nsec and its stdev 867 nsec.

We next ask what kind of functionality relies on ioctl in
the three OSes. To gain initial insight, we develop three triv-
ial apps for Android, which avoid the complexities of real
apps, and profile their ioctl invocations and CPU times.
The apps are: (1) a command-line Java app that prints a
message to stdout without interacting with Android frame-
work (bench1); (2) an app built atop Android framework
and includes one activity printing a message in the screen
(bench2); and (3) an app that extends the previous activ-
ity with a single push-button (bench3). Figure 3 shows for
each app a breakdown of the number of invocations (top)
and CPU time (bottom), split by POSIX subsystems. The
command-line app (bench1) contains hardly any traces of

ioctl in either invocations or CPU time. As soon as we
add one trivial UI element to the app (bench2), ioctl’s cost
becomes dominant over the cost of complete POSIX sub-
systems. The two specific libraries that invoke ioctl in this
case are the libnvrm and libnvrm graphics graphics li-
braries. These userspace graphics libraries resort to ioctl

to bypass the POSIX API, and directly talk to NVDIA’s pro-
prietary drivers in the Linux kernel.

To gain a comprehensive view of all the kinds of function-
alities that resort to ioctl across the three OSes, we look at
the stack traces of each ioctl invocation to identify those
libraries that invoke ioctl frequently. We classify these li-
braries based on their the type of functionality they imple-
ment. Table 5 shows the top three libraries that account for
most of the invocations in the three OSes. In Android, graph-
ics libraries (libnvrm and libnvrm graphics) lead to the
lion’s share of ioctl invocations. Next comes Binder, An-
droid’s core IPC mechanism, whose functionality is split be-
tween a Linux kernel module and a userspace library. In OS
X, the majority of ioctl invocations come from network li-
braries. In Ubuntu, graphics libraries trigger approximately
half of ioctl invocations and the remaining part is mainly
due to libraries providing network functionality.

We next ask why are these libraries relying on ioctl?
Could it be that POSIX is missing some abstractions needed
by these libraries, hence the libraries must resort to unstruc-
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Figure 3: Distribution of POSIX Invocations and CPU Con-
sumption for Three Micro-benchmark Apps. Shows the distri-
bution of POSIX invocations (top) and CPU consumption (bottom)
for various subsystems, across 3 micro-benchmark apps. The first
benchmark app includes no GUI elements. The next two, include
an activity and an extended activity that both lead to expensive
graphics-related ioctl operations.

OS 1st Lib 2nd Lib 3rd Lib Invoc.

Android Graphics (74%)
(e.g., libnvrm)

Binder (24%)
(e.g.,libbinder)

Other (1%) 1.3M

OS X Network (99%)
(e.g.,net.dylib)

Loader (0.6%)
(e.g.,dyld)

- 682

Ubuntu Graphics (52%)
(e.g., libgtk)

Network (47%)
(e.g.,libQtNet)

Other (1%) 0.4M

Table 5: Top Libraries that Invoke IOCTL. Shows the percent-
age of ioctl invocations the top-3 libraries lead to. Graphics li-
braries and network functionality are the main sources of ioctl
invocations.

tured, extension APIs to implement their functionality? We
address this question next.
5.3 Does POSIX Lack Abstractions Needed by Modern

Workloads?
Taking hints from Table 5, we investigate graphics and

networking functionality in modern OSes, which rely signif-
icantly on ioctl signaling that such abstractions are missing
in POSIX. In the following section, we additionally discuss
IPC and storage abstractions, which are examples of abstrac-
tions that are replacing older abstractions and whose imple-
mentation also relies quite heavily on extension APIs.
Graphics. POSIX explicitly omits graphics as a point of
standardization. As a result, there is no standard OS interface
to graphics cards, and different platforms have chosen differ-
ent ways to optimize this critical resource. The explicit omis-
sion of a graphics standard could be due to the emergence

of OpenGL [35, 36], a popular cross-platform graphics API
used in drawing and rendering. While OpenGL works well
for applications, OS and graphics library designers have no
well-defined interfaces to accomplish increasingly compli-
cated operations. Because these operations leverage opti-
mized, and often black-box, GPU hardware, the OS kernel
must marshal opaque data from user space graphics APIs
into vendor-specific hardware.

The lack of a standard kernel interface to GPUs has lead
to sub-optimal performance and limited extensibility. Mod-
ern GPU hardware, and its associated drivers and libraries,
are trending towards a general purpose computational re-
source, and POSIX is not in a position to standardize the
use of this new, powerful paradigm. In the past 4 years, these
problems have been studied in detail [38, 42, 45, 46, 50]. For
example, the PTask API [45] defines a dataflow based pro-
gramming model that allows the application programmer to
utilize powerful GPU resources in a more intuitive way. This
new OS abstraction results in massive performance gains by
matching API semantics with OS capabilities.

The lack of a standard graphics OS abstraction also
causes development and runtime problems. It is the primary
reason ioctl is so frequently used in Android and Ubuntu.
With no alternative, driver developers are forced to build
their own structure around the only available system call,
ioctl. Using opaque input and output tokens, the ioctl

call can be general purpose, but it was never intended for
the complicated, high-bandwidth interface GPUs require.
Graphics library writers must either use ioctl as a funnel
into which all GPU command and control is sent via opaque
data blobs, or they must design a vendor-specific demux in-
terface akin to the syscall system call. This is unfortunate
and unnecessary work for both library and driver developers.

Interestingly, in OS X, graphics functionality does not ac-
count for any significant portion of ioctl invocations. The
reason is that the driver model in OS X, IOKit, is more
structured than in Android or Ubuntu. It uses a well-defined
Mach IPC interface that can effectively marshal parameters
and graphics data across the user-kernel boundary. This cre-
ates a re-usable, vendor-agnostic API, however, the current
interface is designed around the same black-box hardware
that runs on other platforms. Therefore, a standardized OS
interface to graphics processors would likely have the same
benefits on OS X as it would on Ubuntu or Android.

In summary, with no standard OS interface to GPUs, sys-
tem designers for Android, Ubuntu, and OS X are forced
to rely upon extension POSIX interfaces (ioctl) or to in-
vent new interfaces. As a result, cross-platform system pro-
gramming for GPUs remains a challenge to future system re-
search. We illustrated this challenge based on past research
on the Cycada iOS-Android binary compatibility system in
Section 2.
Networking. Although POSIX has a set of 56 APIs to sup-
port network operations, Table 5 shows that developers reg-



ularly use ioctl to express additional customized network
functionality in support of their systems. 99% of ioctl’s
invocations in OS X and 47% in Ubuntu, were low-level
socket operations. The particular use of ioctl appeared to
be in an attempt to circumvent around POSIX restrictions
on exactly what appears in headers files for operations like
[set|get]sockopt. Unlike Graphics, which are explicitly
omitted as a point of standardization from POSIX, the use of
ioctl to perform network operations is surprising and indi-
cates the fact that developers miss fully-standardized support
to express desired network operations, and therefore resort to
ioctl’s support.

5.4 What POSIX Abstractions Are Being Replaced?
Continuing with hints from Table 5, we next discuss ab-

stractions that exist in POSIX but appear to be replaced by
new abstractions. We seek to understand what the replaced
abstractions are, why they are being replaced, what the new
replacement abstractions are, and whether the new abstrac-
tions are converging or diverging across the three OSes.
Inter-Process Communication. A central IPC abstraction
in POSIX is the message queue API (mq *). On all platforms
we studied, applications used some alternate form of IPC. In
fact, Android is missing the mq * APIs altogether. IPC on all
of these platforms has divergently evolved beyond (in some
cases parallel to) POSIX.
• IPC on Android: Binder. In Android, Binder is the

standard method of IPC. Binder APIs are exposed to apps
through highly abstracted classes and interface definition
files that give structure and meaning to all communica-
tion. Some of the insurmountable limitation of traditional
POSIX IPC that urge for new IPC mechanism include: (i)
Filesystem-based IPC mechanisms, e.g., named pipes, can-
not be used in Android (and other similarly sandboxed sys-
tems) due to a global security policy that eliminates world-
writable directories. (ii) Message queues and pipes can-
not be used to pass file descriptors between processes. (iii)
POSIX IPC primitives do not support the context manage-
ment necessary for service handle discovery. (iv) Message
queues have no support for authorization or credential man-
agement between senders and recipients. (v) There is no
support for resource referencing and automatic release of
in-kernel structures.

Binder overcomes POSIX IPC limitations and serves as
the backbone of Android inter-process communication. Us-
ing a custom kernel module, Binder IPC supports file de-
scriptor passing between processes, implements object refer-
ence counting, and uses a scalable multi-threaded model that
allows a process to consume many simultaneous requests. In
addition, Binder leverages its access to processes’ address
space and provides fast, single-copy transactions. When a
message is sent from one process to another, the in-kernel
Binder module allocates space in the destination process’ ad-
dress space and copies the message directly from the source
process’ address space.

Binder exposes IPC abstractions to higher layers of soft-
ware in appropriately abstract APIs that easily support ser-
vice discovery (through the Service Manager), and regis-
tration of RPCs and intent filtering. Android apps can focus
on logical program flow and interact with Binder, and other
processes, through what appear to be standard Java objects
and methods, without the need to manage low-level IPC de-
tails. Because no existing API supported all the necessary
functionality, Binder was implemented using ioctl as the
singular kernel interface. Binder IPC is used in every An-
droid application, and accounts for nearly 25% of the to-
tal measured POSIX CPU time which funnels through the
ioctl call.
• IPC on Linux: D-Bus and KD-Bus. In Ubuntu, the D-

Bus protocol [25] provides apps with high-level IPC abstrac-
tions. D-Bus describes an IPC messaging bus system that
implements (i) a system daemon monitoring system-wide
events, e.g., attaching or detaching a removable media de-
vice, and (ii) a per-user login session daemon for communi-
cation between applications within the same session. There
are several implementations of D-Bus available in Ubuntu.
The applications we inspect use mostly the libdbus imple-
mentation (38 out of 45 apps). This library is, at the low
level, implemented using traditional Unix domain sockets,
and it accounts for less than 1% of the total CPU time mea-
sured across our Ubuntu workloads.

Another recent evolution in IPC is called the Linux Ker-
nel D-Bus, or kdbus. The kdbus system is gaining popularity
in GNU/Linux OSes. It is an in-kernel implementation of
D-Bus that uses Linux kernel features to overcome inherent
limitations of user space D-Bus implementations. Specifi-
cally, it supports zero-copy message passing between pro-
cesses. Also, as opposed to D-Bus, it is available at boot, and
there is no need to wait for the D-Bus daemon to bootstrap.
Thus, Linux security modules can directly leverage it.
• IPC on OS X: Mach IPC. IPC in OS X diverged from

POSIX (and its Android/Linux contemporaries) since its in-
ception. Apple’s XNU kernel uses an optimized descendant
of CMU’s Mach IPC [16, 44, 61] as the backbone for inter-
process communication. Mach comprises a flexible API that
supports high-level concepts such as: object-based APIs ab-
stracting communication channels as ports, real-time com-
munication, shared memory regions, RPC, synchronization,
and secure resource management. Although flexible and ex-
tensible, the complexity of Mach has led Apple to develop
a simpler higher-level API called XPC [17]. Most apps use
XPC APIs that integrate with other high-level APIs, such as
Grand Central Dispatch [18], and launchd the Mach IPC
based init program providing global IPC service discovery.

To highlight key differences in POSIX-style IPC and
newer IPC mechanisms, we adapt a simple Android Binder
benchmark found within the Android source code to mea-
sure both pipes and unix domain sockets as well as Binder
transactions. We also use the MPMMTest application found



Android OS X Ubuntu

Tx/Rx Pipes Unix Binder Pipes Unix Mach Pipes Unix
avg (usec) avg (usec) avg (usec) avg (usec) avg (usec) avg (usec) avg (usec) avg (usec)

32 bytes 40 54 115 6 11 19 18 18
128 bytes 44 56 114 7 51 19 20 10

1 page 62 73 93 8 54 12 21 20
10 pages 291 276 93 18 175 15 58 27

100 pages 2402 1898 94 378 1461 12 923 186

Table 6: Latency Comparison of Different IPC mechanisms on Android, OS X, and Ubuntu. Custom Binder benchmark from AOSP
adapted for pipes and unix domain sockets. Mach IPC measurements use the MPMMTest from open source XNU. Android benchmarks use
an ASUS Nexus-7 tablet with Android 4.3 Jelly Bean; OS X benchmarks use a MacBook Air laptop (4-core Intel CPU @2.0 GHz, 4GB
RAM) running OS X Yosemite; Ubuntu benchmarks use a Dell XPS laptop (4-core Intel CPU @1.7GHz, 8GB RAM) running Ubuntu 12.04
Precise Pangolin. The results are averaged over 1000 repetitions and the time is reported in usec. Both Binder and Mach IPC are nearly
constant time in the size of the transaction.

in Apple’s open source XNU [13]. We measure the latency of
a round-trip message using several different message sizes,
ranging from 32 bytes to 100 (4096 byte) pages. The re-
sults are summarized in Table 6. Both Binder and Mach
IPC leverage fast, single-copy and zero-copy mechanisms
respectively. Large messages in both Binder and Mach IPC
are sent in near-constant time. In contrast, traditional POSIX
mechanisms on all platforms suffer from large variation and
scale linearly with message size.

In summary, driven by the common need for feature-
rich IPC interfaces, and given the limitations of traditional
POSIX IPC, different OSes have created similar but not
converging, and non-standards adherent, IPC mechanisms.
File System. Several papers have already identified the
migration of modern applications away from traditional
file system abstractions into higher-level storage abstrac-
tions, such as relational databases or object-relational man-
agers [30, 52]. The departure from the traditional POSIX file
system into higher-level storage abstractions, i.e., sqlite, was
the key insight that allowed Pebbles reconstruct application-
level objects without input from applications. Besides the
benefits of new higher-level storage abstractions, there are
also significant performance overheads if the underlying file
system, designed based on certain optimization decisions
– such as lazy-copying of in-kernel file system caches – is
used by applications in ways that violate these assumptions.
Our measurements complement these previous works.

First, there is a clear trend of transitioning from regular
unstructured data files into structured data. In Android, 35 of
the 45 apps we checked depend on structured data stored in
sqlite. Typical Android applications that depended on struc-
tured data included Media & Video, Accessories & Develop-
ment, and Games applications. On the other hand, in Ubuntu,
the transitioning to structured data is less definite. Only 12
of the 45 applications are using structured data – mainly the
web-oriented apps. These results suggest that Pebbles’s de-
sign from past work [52], as discussed in Section 2, may
extend to OS X but is unlikely to apply to Ubuntu.

Second, all the Android applications we checked issue
file system-related POSIX calls through libsqlite. The use of
this library causes five expensive fsync calls for every single

INSERT/UPDATE/DELETE operation. Overall, the causes
of the migration into higher-level storage abstractions have
been discussed [48]: databases allow high-level, convenient
access to structured data. The open question, however, re-
mains: how should operating systems and file systems better
support these new and significant abstractions?
Asynchronous I/O. Our experiments reveal another inter-
esting evolutionary trend: the replacement of POSIX APIs
for asynchronous I/O with new abstractions built on multi-
threading abstractions. The nature and purpose of threads
has been a debate in OS research for a long time [21, 37, 41].
POSIX makes no attempt to prioritize a threading model
over an event-based model; it simply outlines APIs neces-
sary for both. Our study revealed that while POSIX lock-
ing primitives are still extremely popular and useful, new
trends in application abstractions are blurring the line be-
tween event and thread by combining high-level language
semantics with pools of threads fed by event-based loops.
This new abstraction or programming paradigm has evolved
directly from the unique operating environment of mobile
devices. The intimate nature of interacting with a computer
via touch intuitively drives low-latency and fast response
time requirements for application GUIs. While an event-
based model may seem the obvious solution, event pro-
cessing in the input or GUI context quickly leads to sub-
optimal user experience, especially when display refresh
rates require < 16ms intra-frame processing time to main-
tain smooth and responsive GUIs. Dispatching event-driven
work to a queue backed by a pool of pre-initialized threads
has become a de facto standard programming model in An-
droid, OS X, and Ubuntu. Although this paradigm appears in
all the OSes we studied, the implementations are extremely
divergent.
• Asynchrony in Android: Thread Pools and Event Loops.

Android defines several Java classes which abstract the
concepts of creating, destroying, and managing threads
(ThreadPool), looping on events (Looper), and asyn-
chronous work dispatching (ThreadPoolExecutor). A
Looper class can dispatch bits of work based on input events
to a ThreadPoolExecutor that manages a set of threads. For



example, one can use Looper to asynchronously dispatch file
downloads for processing into a ThreadPool.
• Asynchrony in Ubuntu: Thread Pools and Event Loops.

Ubuntu applications can choose from a variety of libraries
providing similar functionality, but through vastly differ-
ent interfaces. The libglib, libQtCore, and libnspr

all provide high-level thread abstractions based on the
GNOME [27] desktop environment, and account for more
than 13% of all measured POSIX CPU time. In particu-
lar, libglib provides the GSource, GThreadPool, and
GAsyncQueue C-structure based APIs that perform concep-
tually similar functions to their Android Java counterparts.
In addition, the libQtCore library implements threading
abstractions for Qt-based Ubuntu applications.
• Asynchrony in OS X: Grand Central Dispatch. In OS

X the APIs are, yet again, different. The vast majority of
event-driven programming in OS X is done through Mach
IPC, and corresponding kernel system calls comprise the
majority of system CPU time [20]. Apple has written C,
Objective-C, and Swift based APIs around event handling,
thread pool management, and asynchronous task dispatch.
Most of these APIs are enabled through Grand Central Dis-
patch [18] (GCD). GCD manages a pool of threads, and
even defines POSIX alternatives to semaphores, memory
barriers, and asynchronous I/O. Low-level objects such as
dispatch queue t and dispatch source t are managed
by functions such as dispatch async and dispatch -

source set event handler. The GCD functionality is
exported to even higher levels of abstraction in classes such
as NSOperation [19]. Apple has even written a tutorial [15]
for developers on how to migrate away from POSIX threads.

A fascinating practical result of exposing high-level event
and thread management APIs to app developers is that the
number of threads in the system increases. In our measure-
ments we found that our idle Android tablet had 690 instan-
tiated threads, our idle MacBook Air laptop had 580 instan-
tiated threads, and our idle Ubuntu laptop had 292 instanti-
ated threads. Particularly for Android, more than 100 instan-
tiated threads were directly tied to custom Binder, Looper,
and ThreadPool management APIs.

In summary, driven by the strong need for asynchrony
and the event-based nature of modern GUI applications,
different OSes have created similar but not converging and
non-standard adherent threading support mechanisms.

5.5 Unintended Effects of POSIX Use
We end our study with some interesting findings about

unintended side-effects due to lack of use of various POSIX
corners. Section 5.1 revealed that some POSIX APIs, al-
though implemented, are never actually used by real, consumer-
oriented applications. We discuss two implications of this
aspect here. First, it is a well-known fact that unused (dead)
code in any program is a liability [40, 47, 51]. If a piece of
code is unused, its testing, maintenance, and debugging be-
comes a lower priority for developers, increasing the chance
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Figure 4: Popularity of POSIX in Benign vs. Malicious Apps.

of bugs to survive over long periods. Our study reveals that
this observation applies to POSIX and its implementation in
Android. We find that the syslog function, a POSIX log-
ging utility, is implemented by Android’s bionic libc, but
the implementation is actually broken. Not only is there no
syslog daemon process to which the syslog function would
communicate, but the code also attempts to connect to a
Unix domain socket named /dev/kmsg which in Android is
actually a character device! (Incidentally, we found a similar
side-effect in our prior work Cycada [7]: in iOS, the select
system call, presumably also equally rarely used as in the
OSes we study here, is buggy; its latency scales linearly
with the number of file descriptors and the call fails to return
when selecting on more than 250 descriptors.)

Second, it is well-known that malware developers often
exploit interfaces known to be old, poorly maintained, and
buggy. Our study reveals evidence of this aspect, as well.
We examined the POSIX functions linked from 1,260 mali-
cious Android applications available on a popular malware
corpus [62]. Figure 4 compares the distribution of POSIX
APIs in 45 popular (and hopefully benign) Android apps
with that of POSIX APIs in the malicious apps. The POSIX
calls on the x axis are sorted by their popularity in the be-
nign apps. The spikes appearing toward the right-hand side
of the graph show that malware often leverages APIs that
are not linked by benign applications. For example, a set
of pseudo-terminal functions are quite popular among the
malicious apps (40.5%), but hardly linked in benign apps
(0.45%). Such functions might be used by malware to open
remote shells on compromised devices. Thus, unused cor-
ners of POSIX can be abused and should be well-understood
to properly protect them.

6. Related Work and Discussion
Our results demonstrate a clear transition away from

POSIX for four key OS subsystems: graphics, IPC, thread-
ing, and storage. The trend away from POSIX in each
of these areas has followed different, and often divergent,
paths on different platforms. The changes likely stem from
POSIX’s limitations in supporting modern workloads, which
are increasingly graphical, latency-sensitive, and memory-
constrained (particularly on mobile devices). To sustain the
new workloads, and take full advantage of the new, pow-



erful hardware available in these devices, OS designers
have evolved some POSIX APIs and concepts to fit newer
paradigms, left other POSIX APIs in dusty corners of sel-
dom used libraries, and invented new APIs outside the orig-
inal bounds of POSIX.

All of these evolutions are natural and positive, however
they have a downside: as the trend away from POSIX fol-
lows different and often divergent paths on different plat-
forms, POSIX’s cross-OS portability goal becomes even
more distant. What should OS developers, researchers, stan-
dards bodies, and educators do about this trend? Should we
allow this departure from POSIX to continue risking even
the limited cross-OS portability we have today? Should we
instead examine these trends to determine whether POSIX
is due for an upgrade? Should educators evolve their courses
to cover the new abstractions that are taking form in modern
OSes, e.g., IPC, and if so, what new abstractions should they
cover?

Several recent works have explored system designs that
build upon this departure from the POSIX API to reap bene-
fits of various kinds. Section 2 provided two examples from
our own experience, but there are numerous other examples.
Arrakis [43] proposes a new operating system design to cir-
cumvent the kernel on I/O operations, including changing
the POSIX API, to attain superior performance. A POSIX
version of Arrakis is also developed, with better perfor-
mance than Linux, but not as good as the non-POSIX de-
sign. Flux [31] enables app migration across heterogeneous
Android devices by leveraging higher-level Android APIs to
avoid the need to capture low-level device state managed by
device-specific ioctl extensions. OptFS [23] departs from
traditional POSIX semantics for file system design, with a
design that requires only minor modifications to POSIX, to
yield performance improvements for some workloads that
are an order of magnitude better. Furthermore, a plethora of
large scale distributed file systems have moved away from
POSIX to avoid performance penalties, including Ceph [60],
HDFS [49], and GFS [26], the latter of which is justified in
part due to its support of customized internal infrastructure
and therefore lacks the need to support POSIX semantics.
Our work is complementary to all of these works, providing
the first rigorous characterization of evolution of POSIX ab-
stractions across multiple OSes. Our results can be leveraged
by developers, researchers, and standards bodies to adapt
their applications and optimization and standardization ef-
forts toward the new or changed abstractions.

Two recent studies [30, 58] make related observations
about modern use of system-level APIs. A 2011 paper [30]
observes that file system APIs are being used in unexpected
ways in modern OSX workloads. One reason, the authors
observe, is that system-level workloads are driven by high-
level data management libraries. We make this and other
observations at the broader scope of all system abstractions
standardized in POSIX across multiple OSes.

A paper concurrent to ours [58] statically analyzes all
packages in the Ubuntu 15.04 distribution with the goal
of identifying frequently-used system APIs and develop-
ing metrics to evaluate research prototypes for compatibility
with modern consumer-oriented workloads. While driven by
different goals, our studies reach several common conclu-
sions, including that large portions of POSIX are unused by
modern workloads and that extension APIs, such as ioctl,
are used extensively. From the standpoint of these common
conclusions, each study adds complementary dimensions
that mutually strengthen our findings. Their study covers a
broader set of system APIs, considering /proc pseudo files
and the many specific ioctl/fcntl/prctl codes in addi-
tion to standard POSIX functions in libc. Our study general-
izes the observations to multiple OSes and uses dynamic ex-
periments, in addition to static analysis, to reveal the perfor-
mance implications of heavy extension API usage. Finally,
our study identifies forces driving the evolution of several
key abstractions, including graphics and IPC, and uniquely
illustrates how new OS functionality is built on extensive use
of extension APIs.

7. Conclusions
Perfect application portability across all UNIX-based

OSes is clearly beyond the realm of possibility. However,
maintaining at least a subset of harmonized abstractions is
still a viable alternative for preserving some degree of uni-
formity within the UNIX-based OS ecosystem. Within the
context of its limitations – such as the exclusive focus on
consumer-oriented workloads – our study shows that POSIX
abstractions are evolving in significant ways in three mod-
ern UNIX-based OSes (Android, OS X, and Ubuntu), and
that changes are not converging to any new unified set of
abstractions. Parts of the POSIX standard appear unnec-
essary for consumer-OS developers to implement, others
include a set of obsolete abstractions whose implementa-
tions are sometimes buggy and abused by attackers, and a
set of new abstractions necessary for modern workloads is
completely missing. We believe that a new revision of the
POSIX standard is due, and urge the research community to
investigate what that standard should be. Our study provides
a few examples of abstractions, graphics, IPC, storage, and
networking, as starting points for re-standardization, and we
recommend that any changes be informed by popular frame-
works that are now taking a principal role in modern OSes.
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