
Cluster-Level Storage @ Google
How we use Colossus to improve storage efficiency

Denis Serenyi
Senior Staff Software Engineer
dserenyi@google.com

November 13, 2017

Keynote at the 2nd Joint International Workshop on Parallel Data Storage & Data Intensive Scalable Intensive Computing Systems

What do you call a few PB of free space?

What do you call a few PB of free space?
An emergency low disk space condition

Typical Cluster:
10s of thousands of machines

PB of distributed HDD
Optional multi-TB local SSD

10 GB/s bisection bandwidth

Part 1: Transition From GFS to Colossus

GFS architectural problems

GFS master
● One machine not large enough for large FS
● Single bottleneck for metadata operations
● Fault tolerant, not HA

Predictable performance
● No guarantees of latency

Some obvious GFSv2 goals

Bigger!
Faster!
More predictable tail latency

GFS master replaced by Colossus
GFS chunkserver replaced by D

Solve an easier problem

A “file system” for Bigtable
● Append-only
● Single-writer (multi-reader)
● No snapshot / rename
● Directories unnecessary

Where to put metadata?

Storage options back then

GFS
Sharded MySQL with local disk & replication

○ Ads databases
Local key-value store with Paxos replication

○ Chubby
Bigtable (sorted key-value store on GFS)

Storage options back then

GFS ← lacks useful database features
Sharded MySQL ← poor load balancing, complicated

Local key-value store ← doesn’t scale

Bigtable ← hmmmmmm….

Why Bigtable?

Bigtable solves many of the hard problems:
● Automatically shards data across tablets
● Locates tablets via metadata lookups
● Easy to use semantics
● Efficient point lookups and scans

File system metadata kept in an in-memory locality group

Metadata in Bigtable (!?!?)

Application Bigtable (XX,XXX tabletservers)

METADATA user1 tablets user2 tablets ...

CFS Bigtable (XXX tabletservers)

METADATA FS META
XX,XXX D chunkservers

metadata data

GFS
master XXX GFS chunkservers

GFS metadata GFS data

Note: GFS still present,
storing file system metadata

GFS master -> CFS

CFS “curators” run in Bigtable tablet
servers

Bigtable row corresponds to a single
file

Stripes are replication groups: open,
closed, finalized

stripe 0, checksum, length

chunk0 chunk1 chunk2

stripe 1, checksum, length

chunk0 chunk1 chunk2

stripe 2, OPEN

chunk0 chunk1 chunk2

/cfs/ex-d/home/denis/myfile
is-finalized? mtime, ctime, ...
encoding r=3.2

Colossus for metadata?

Metadata is ~1/10000 the size of data
So if we host a Colossus on Colossus…
100 PB data → 10 TB metadata
10TB metadata → 1GB metametadata
1GB metametadata → 100KB meta...

And now we can put it into Chubby!

Part 2: Colossus and Efficient Storage

Themes

Colossus enables scale, declustering

Complementary applications → cheaper storage

Placement of data, IO balance is hard

What’s a cluster look like?

Machine 1

YouTube
Serving

GMail
Bigtable

D Server

Machine XX000

YouTube
MapReduce

CFS
Bigtable

D Server

Machine 2

Ads
MapReduce

YouTube
Serving

D Server

Let’s talk about money

Total Cost of Ownership

TCO encompasses much more than the retail price of
a disk

A denser disk might sell at a premium $/GB but still
cheaper to deploy
(power, connection overhead, repairs)

The ingredients of storage TCO

Most importantly, we care about storage TCO, not
disk TCO. Storage TCO is the cost of data durability
and its availability, and the cost of serving it

We minimize total storage TCO if we keep the disk full
and busy

What disk should I buy?

Which disks should I buy?

We’ll have a mix because we’re growing

We have an overall goal for IOPS and capacity

We select disks to bring the cluster and fleet closer to
our overall mix

What we want

Equal amounts of hot data (spindle is busy)
Rest of disk filled with cold data (disks are full)

hot data

cold data

hot data

cold data

small disk big disk

How we get it
Colossus rebalances old, cold data

...and distributes newly written data evenly across disks

When stuff works well

Each box is a D server

Sized by disk
capacity

Colored by
spindle utilization

Rough scheme

Buy flash for caching to bring IOPS/GB into disk range

Buy disks for capacity and fill them up

Hope that the disks are busy
○ otherwise we bought too much flash…
○ but not too busy…

If we buy disks for IOps, byte improvements don’t help

If cold bytes grow infinitely, we have lots of IO capacity

Filling up disks is hard

Filesystem doesn’t work well when 100% full

Can’t remove capacity for upgrades and repairs without
empty space

Individual groups don’t want to run near 100% of quota

Administrators are uncomfortable with statistical
overcommit

Supply chain uncertainty

Applications must change

Unlike almost anything else in our datacenters, disk I/O
cost is going up

Applications that want more accesses than HDDs offer
probably need to think about making their hot data hotter
(so flash works well) and cold data colder

An application written X years ago might cause us to buy
smaller disks, increasing storage costs

Conclusion

Colossus has been extremely useful for optimizing our
storage efficiency
● Metadata scaling enables declustering of resources
● Ability to combine disks of various sizes and workloads

of varying types is very powerful

Looking forward, I/O cost trends will require both
applications and storage systems to evolve

Thank you!

Denis Serenyi dserenyi@google.com

