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Abstract

Test suite generators could help software engineers to ensure software quality by detecting software
faults. These generators can be applied to software projects that do not have an initial test suite, a
test suite can be generated which is maintained and optimized by the developers. Testing helps to
check if a program works and, also if it continues to work after changes. This helps to prevent software
from failing and aids developers in applying changes and minimizing the possibility to introduce errors
in other (critical) parts of the software.

State-of-the-art test generators are still only able to capture a small portion of potential software
faults. The Search-Based Software Testing 2017 workshop compared four unit test generation tools.
These generators were only capable of achieving an average mutation coverage below 51%, which is
lower than the score of the initial unit test suite written by software engineers.

We propose a test suite generator driven by neural networks, which has the potential to detect
mutants that could only be detected by manually written unit tests. In this research, multiple
networks, trained on open-source projects, are evaluated on their ability to generate test suites.
The dataset contains the unit tests and the code it tests. The unit test method names are used to
link unit tests to methods under test.

With our linking mechanism, we were able to link 27.41% (36,301 out of 132,449) tests. Our
machine learning model could generate parsable code in 86.69% (241/278) of the time. This high
number of parsable code indicates that the neural network learned patterns between code and tests,
which indicates that neural networks are applicable for test generation.
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Chapter 1

Introduction

Test suites are used to ensure software quality when a program’s code base evolves. The capability
of producing the desired effect (effectiveness) of a test suite is often measured as the ability to un-
cover faults in a program [ZM15]. Although intensively researched [AHF 17, KC17, CDET08, FZ12,
REP™11], state-of-the-art test suite generators lack test coverage that could be achieved with manual
testing. Almasi et al. [AHFT17] explained a category of faults that are not detectable by these test
suite generators. These faults are usually surrounded by complex conditions and statements for which
complex objects have to be constructed and populated with specific values.

The SBST workshop of 2017 had a competition of Java unit test generators. In the competition,
test suite effectiveness of test suite generators and manually written test suites were evaluated. The
effectiveness of the test suites are measured by their ability to find faults and is measured with
the mutation score metric. The ability to find faults can be measured with mutation score because
mutations are a valid substitute for software faults [JJIT14]. The mutation score of a test suite
represents the test suite’s ability to detect syntactic variations of the source code (mutants), and is
computed using a mutation testing framework. In the workshop, manually written test suites score
on average 53.8% mutation coverage, while the highest score obtained by a generated test suite is
50.8% [FRCA17].

However, it is impossible to conclude that all possible mutants are detected even when all generated
mutants are covered. It is more likely that the used mutation testing tool missed a mutation, since it
is impossible to know if all non-redundant mutants were generated because this list is infinite. Some
methods can have an infinite amount of output values. There could be an infinite number of mutants
be introduced that only change one of these output values.

We need to leverage the ability to automatically test many different execution paths and the capa-
bility to learn how to test complex situations of generated and manually written test suites. Therefore,
we propose a test suite generator that uses machine learning techniques.

A neural network is a machine learning algorithm, that can learn complex tasks without being
programmed with rules. The network learns from examples and captures the logic that is inside.
Thus, new rules can be taught to the neural network by just showing examples of how the translation
is done.

Our solution uses neural networks and combines manual and automated test suites by learning
patterns between tests and code to generate test suites with higher effectiveness.

1.1 Types of testing

There are two software testing methods, i) black box testing [Ost02a] and ii) white box testing
[Ost02b]. With black box testing, the project’s source code is not used to create tests. Only the
specification of the software is used [LKT09]. White box testing is a method that uses the source
code to create tests. The source code is evaluated, and its behavior is captured [LKT09]. White box
testing focuses more on the inner working of the software, while black box testing focuses more on
specifications [ND12]. Black box testing is more efficient with testing of large code blocks as only the



specification has to be evaluated, while white box testing is more efficient in testing hidden logic.
Our unit test generator can be categorized as white box testing since we use the source code to
generate tests.

1.2 Neural networks

Neural networks are inspired by how our brains work [Maa97]. Our brain uses an interconnected
network of neurons to process everything that we observe. A neuron is a cell that receives input
from other neurons. An observation is sent to the network as the input signal. Each neuron in the
network sends a signal to the next cells in the network based on the signals that it received. With this
approach, the input translates to particular values at the output of the network. Humans perform
actions based on this output. This concept is similar to the concept of how a neural network works.

A neural network can be seen as one large formula. Like the networks in our brain, a neural network
also has an input layer, hidden layers, and an output layer. In our solution, an input layer is a group
of neural network cells that receive the input for a translation that is going to be made. An encoder
performs the mapping of the input over the input cells. After the input layers there are the hidden
layers. The first layer receives the values of the input layer and sends a modified version of that value,
based on its configuration, to the next layer. The other layers work in the same way as the first layer
of the input. The only difference is that they receive the value from the last hidden layer instead of
the input layer. Eventually, a particular value arrives at the last layer (output layer) and is decoded
as the prediction. A visualization is shown in Figure 1.1.

Input layer Hidden layers Output layer

Figure 1.1: Visualization of a neural network

The configuration of the neural network cells is the logic behind the predictions. The configuration
has to be taught to the network by giving training examples. For example, we can teach the neural
network the concept of a house by giving examples of houses and non-houses. The non-houses are
needed to teach the difference between a house and something else. The neurons are configured in a
way to classify based on the training data. This configuration can later be used to make predictions
on unseen data.

For our research, we have to translate a sequence of tokens into another sequence of tokens. This
problem requires a particular type of neural network [CVMG™14]. A combination of multiple networks
with a specific type of cells is required for the translation [CVMG™14]. These cells are designed so
that they can learn long-term dependencies. Thus, during the predictions, the context of the input
sequence is also considerer. Cho et al. [CVMG™14] have designed a network with these specifications.
They have used a network with one encoder and one decoder. The encoder network translates the
variable length input sequences to a fixed size buffer. The decoder network translates this buffer into
a variable size output. We can use this setup for our translations by using the variable sized input



and output as our input and output sequences.

1.3 Research questions

Our research goal is to study machine learning approaches to generate test suites with high ef-
fectiveness: learn how code and tests are linked and apply this logic on the project’s code base.
Although neural networks are widely used for translation problems [SVL14], training them is often
time-consuming. Therefore, we also research heuristics to alleviate this issue. This is translated into
the following research questions:

RQ1 What neural network solutions can be applied to generate test suites in order to achieve a higher
test suite effectiveness for software projects?

RQ2 What is the impact of input and output sequence compression on the training time and accuracy?

1.4 Contribution

In this work, we contribute an algorithm to link unit tests to the method under test, a training set
for translating code to tests with more than 52,000 training examples, software to convert code to
different representations and also support the translation back, and a neural network configuration
with the ability to learn patterns between code and tests. Finally, we also contribute a pipeline that
takes as input GitHub repositories and has as output a machine learning model that can be used to
predict tests. As far as we know, we are the first to perform experiments in this area. Therefore, the
linking algorithm and the neural network configuration can be used as a baseline for future research.
The dataset can also be used on varies other types of machine learning algorithms for the development
of a test generator.

1.5 Outline

We address the background of test generation, code analysis and machine learning in Chapter 2. In
Chapter 3, we discuss how a test generator could be designed in general that uses machine learning.
In Chapter 4, we list projects that can be used for evaluation baseline, and we introduce metrics to
measure the progress of developing the test suite generator and how well it performed compared to
other generators on a baseline. How we develop our test generator can be found in Chapter 5. Our
results are presented in Chapter 6 and discussed in Chapter 7. Related work is listed in Chapter 8.
We conclude our work in Chapter 9. Finally, an overview of related work to this thesis can found in
Chapter 10.



Chapter 2

Background

Multiple approaches address the challenge of achieving a high test suite effectiveness. Tests could be
generated based on the project’s source code by analyzing all possible execution paths. An alternative
is using test oracles, which can be trained to distinguish between correct and incorrect method output.
Additionally, many code analysis techniques can be used to gather training examples and many
machine learning algorithms can be used to translate from and/or to code.

2.1 Test generation

Common methods for code-based test generation are random testing [AHFT17], search-based test-
ing [FRCA17, AHF17], and symbolic testing [CDE*08]. Almasi et al. benchmarked random testing
and search-based testing on the closed source project LifeCalc [AHF*17] and found that search-based
testing had at most 56.40% effectiveness, while random testing achieved at most 38%. They did
not analyze symbolic testing because there was no symbolic testing tool available that supported the
analyzed project’s language. Cadar et al. [CDET08] applied symbolic testing on the HiStar kernel
achieving 76.4% test suite effectiveness compared to 48.0% with random testing.

2.1.1 Test oracles

A test oracle is a mechanism that can be used to determine whether a method output is correct or
incorrect. Testing is performed by executing the method under test with random data and evaluating
the output with the test oracle.

Fraser et al. [FZ12] analyzed an oracle generator that generated assertions based upon mutation
score. For Joda-time, the oracle generator covered 82.95% of the mutants compared to 74.26% for the
manual test suite. For Commons-Math, the oracle generator covered 58.61% of the mutants compared
to 41.25% for the manual test suite. Their test oracle generator employs machine learning to create the
test oracles. Each test oracle captures method behavior for a single method in the software program
by training on the method with random input. Contrary to this approach, our proposed method
generates code while this method predicts the output of methods.

2.2 Code analysis

Multiple methods can be used to analyze code. Two possibilities are the analysis of i) bytecode or ii)
the program’s source code. The biggest difference between bytecode analysis and source code analysis
is that bytecode is closer to the instructions that form the real program and has the advantage of
more available concrete type information. For this language, it is easier to construct a call graph,
which can be used to determine the concrete class of certain method calls.

With the analysis of bytecode, the output of the Java compiler is analyzed and could be performed
by using libraries. For instance, the T.J. Watson Libraries for Analysis (WALA) . The library will

Lhttp://wala.sourceforge.net



generate the call graph and provides functionality that can be applied on the graph. With the analysis
of source code, the source code in the representation of an abstract syntax tree (AST) is analyzed. For
AST analysis, JavaParser 2 can be used to construct an AST, and the library provides functionality
to perform operations on the tree.

2.3 Machine learning techniques

Multiple neural network solutions could translate sequences (translating an input sequence to a
translated sequence). For our research, we expect that sequence-to-sequence (seq2seq) neural net-
works based on recurrent neural networks (RNNs) or convolutional neural networks (CNNs) are most
promising. The version that uses RNNs can be configured to contain long short-term memory (LSTM)
nodes [SVL14, SSN12] or gated recurrent unit (GRU) nodes [YKYS17a] and can be configured with
an attention mechanism so it can make predictions on long sequences [BCB14]. Bahdanau [BCB14]
evaluated the attention mechanism. They tested sequence length until a length of 60 tokens and used
bilingual evaluation understudy (BLEU) score as metric. The BLEU score is used to calculate the
quality of translations. How higher the score, how better. The quality of the predictions was the same
for using both attention or no attention mechanism until a length of 20 tokens. The quality dropped
from approximately 27 BLEU to approximately 8 BLEU when using no attention mechanism, and
dropped from approximately 27 BLEU to approximately 26 BLEU when using an attention mecha-
nism. Chung et al. [CGCB14] made a comparison between LSTM nodes and GRU nodes to predict
the next time step in songs. They found that the quality of prediction of both LSTM and GRU are
comparable. GRU outperforms except on one dataset by Ubisoft. However, they stated that the
prediction quality of both could not be clearly distinguished. These networks could perform well to
translate code to unit tests because they can make predictions on long sequences.

An alternative to RNNs, are CNNs. Recent research shows that CNNs can also be applied to
make predictions based on source code [APS16]. In addition, Gehring et al. [GAGT17] were able to
train CNN models up to 21.3 times faster compared to RNN models. However, in other research,
GRU outperforms CNN with handling long sequences correctly [YKYS17b]. We also look into CNNs
because in our case it could make better predictions, especially because they are faster to train what
enables us to use larger networks.

There are also techniques in research that could be used to prepare the training data in order to
optimize the training process. Hu et al. [HWLJ18] used a structure-based traversal (SBT) in order to
capture code structure in a textual representation, Ling et al. [LGH'16] used compression to reduce
sequence lengths, and Sennrich et al. used byte pair encoding (BPE) [SHB15] to support better
predictions on words that are written differently but have the same meaning.

In conclusion, to answer RQ1, we evaluate both CNNs and RNNs, as both tools look promising.
We apply SBT, code compression, and BPE to find out if these techniques improve the results when
translating methods into unit tests.

2https://javaparser.org/



Chapter 3

A Machine Learning-based Test
Suite (zenerator

Our solution focuses on generating test suites for Java projects that have no test suite at all. The
solution requires the project’s method bodies and the name of the classes in which they belong. The
test generator sends the method bodies in a textual representation to the neural network to transform
them into test method bodies. The test generator places these generated methods in test classes.
The collection of all the new test classes is the new test suite. This test suite can be used to test the
project’s source code on faults.

In an ideal situation, a model is already trained. When this is not the case, then additional actions
are required. Training projects are selected to train the network to generate usable tests. For instance,
all training projects should use the same unit test framework. A unit test linking algorithm is used
to extract training examples from these projects. The found methods and the unit test method are
given as training examples to the neural network. The model can then be created by training a neural
network on these training examples. A detailed example of a possible flow can be found in Figure 3.1.

Collect Execute tests . ) Create neural
projects on =4 and store =4 peklERE Lmk TR — (.:r.e o . network =2 Predict tests
github reports queue raining se models

Figure 3.1: Possible development flow for the test suite generator

3.1 Data collection

We set some criteria to ensure that we have useful training examples. In addition, we need a threshold
on the number of training examples that should be gathered, because a large amount might not be
necessary and is more time-consuming, while too few will affect the accuracy of the model.

3.1.1 Selecting a test framework

The test generator should not generate tests that use different frameworks since each framework works
differently. Therefore, it is important to select projects using only one testing framework. In 2018,
Oracle reviewed what Java frameworks are the most popular [Poi]. They concluded that the unit test
framework Junit is the most used. We selected Junit as test framework based on its popularity. We
expect that we require a large amount of test data to train the neural network model.

3.1.2 Testable projects

Unit tests that fail are unusable for our research. Our test generator should generate unit tests
that test a piece of code. When a test fails, it fails due to an issue. It is not sure if the issue is a
mismatch between the method’s behavior and the behavior captured in the test. These tests should



not be included because a mismatch in behavior could teach the neural network patterns that prevent
testing correctly. So, the tests have to be analyzed in order to filter out tests that fail. For the
filtering, we execute the unit test from the projects, analyze the reports, and extract all the tests that
succeed.

3.1.3 Number of training examples

For our experiment, a training set size in the order of thousands should be more likely than a training
set size in the order of millions. These numbers are based on findings of comparable research, meaning
studies that do not involve translation to or from a natural language. Ling et al. [LGH™ 16] used 16,000
annotations for training, 1,000 for development, and 1,805 for testing to translate game cards into
source code. Beltramelli et al. [Bell7] also used only 1,500 web page screenshots to translate mock-
ups to HTML. A larger number of training examples are used in research that translated either to or
from a natural language. Zheng et al. [ZZLW17] used 879,994 training examples to translate source
code to comments, and Hu et al. [HWLJ18] used 588,108 training examples to summarize code into
a natural language. The reason why we need less data could be because a natural language is more
complicated compared to a programming language. In a natural language, a word can have different
meanings depending on its context, and the meaning of a word also depends on the position within a
sentence. For example, a fish is a limbless cold-blooded vertebrate animal. Fish fish is the activity of
catching a fish. Fish fish fish means that fish are performing the activity of catching other fish. This
example shows that the location and context of a word have a big impact on its meaning. Another
example is that a mouse could be a computer device in one context, but it could also be an animal
in another context. A neural network that translates either to or from a natural language has to be
able to distinguish the semantics of the language. This is not necessary for the analyzed programming
language in our research. Here, differences between types of statements, as well as differences between
types of expressions, are clear. Ambiguity, like in the example ”fish fish fish”, does not represent a
challenge in our research. Therefore, it does not have to be contained in the training data, and the
relationship does not have to be included in the neural network model.

3.2 Linking code to test

To train our machine learning algorithm, we require training examples. The algorithm will learn
patterns based on these examples. To construct the training examples, we need a dataset with pairs
of source codes of methods and unit tests. However, there is no direct link between a test and the code
that it tests. Thus, in order to create the pairs, we need a linking algorithm that can pair methods
and unit tests.

3.2.1 Linking algorithm

To our knowledge, an algorithm that can link unit tests to methods does not exist yet. In general,
every test class is developed to test a single class. In this work, we propose a linking algorithm that
uses the interface of the unit test class to determine what class and methods are under test.

We consider that all classes used during execution of a unit test could be the class under test. For
every class, we determine what methods, based on their name, match the best with the interface of
the unit test class. The class with the most matches is assumed to be the class under test. The
methods are linked with the unit test methods that have the best match. This also means that a unit
test method cannot be linked when it does not have a match with the class under test.

However, this algorithm has limitations. For example, in Listing 3.1 stack and messages are both
considered the class under test. It is possible to detect that stack is under test when the linking
algorithm is only applied to the statements that are required to perform the assertion. Backward
slicing could be used to generate this subset of statements, because the algorithm can extract what
statements have to be executed in order to perform the targeted statement [BACHP10]. The subset
obtained with backward slicing will only contain calls to stack and would therefore find the correct
link. However, this algorithm will not work when asserts are also used to check if the test state is
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valid to perform the operation that is tested, as now additional statements are included that have
nothing to do with the method under test.

public void push() {
stack = stack.push(133);
messages.push(”Asserting”);
assertEquals(133, stack.top());
}

Listing 3.1: Unit tests that will be incorrectly linked without statement elimination

3.2.2 Linking methods

The linking algorithm of Section 3.2.1 could be used to construct the links. However, the algorithm
requires information about the source code as input. As described in Section 2.2, this could be done
by analyzing the AST or bytecode.

Bytecode analysis has the advantage that concrete types can be resolved because it uses a callgraph.
This enables the ability to support tests where a base class of the class under test is used. How this
is done is illustrated in Listing 3.2 with a pseudo call graph in Listing 3.3. With bytecode analysis,
it is possible to determine that the types of AList are only ArraylList and LinkedList, because the
initialization of ArrayList and LinkedList are the only initializations that are assigned to AList in the
method’s call graph.

public List getList() {

return (a ? new ArrayList<>() : new LinkedList());

}

public void push() {
List AList = getList();
assertEquals(AList.empty());

Listing 3.2: Hidden concrete type

push()
getList () [assing to AList]

new ArrayList<>() [assing to tmp] || new LinkedList() [assing to tmp]
return tmp

AList.empty() [assing to tmp2]
assertEquals(tmp2)

Listing 3.3: Pseudo call graph for Listing 3.2

Resolving concrete types is impossible with AST analysis. It is possible to list what concrete
classes implement the List interface. However, when this is used as the candidate list during the
linking process, it could result in false positive matches. The candidate list could contain classes that
were not used. This makes it impossible to support interfaces and abstract methods with the AST
analysis.




An advantage of the AST analysis is that it does not require the project’s bytecode, meaning that
the project does not have to be compilable. The code could also be partially processed because only
a single class and some class dependencies have to be analyzed. Partial processing reduces the chance
of unsupported classes since less has to be analyzed. With bytecode analysis, all dependencies have
to be present and every class that is required to build the call graph.

3.3 Machine learning datasets

The datasets for the machine learning can be prepared once enough training examples are gathered.
A machine learning algorithm needs these sets in order to train the model. For our neural network,
we require a test, training, and validation set. The only difference between these sets is the number
of training examples and the purpose of the sets. Any training examples could be included in any of
the sets as long as the input sequence is not contained in any another set. We discussed how training
examples are selected in Section 3.1.

3.3.1 Training set

The training set is used for training the machine learning model. The machine learning algorithm
tries to create a model that can predict the training examples as good as possible.

3.3.2 Validation set

The results achieved with the training set will be better than on unseen data, because the machine
learning used this model to learn patterns. The validation set is used to validate at what time more
training will negatively impact the results, as a consequence of training too strict on the data, by
making the model too specific on the training set. Therefore, continuing the training will reduce the
ability to generalize, which has a bad impact for making predictions on unseen data. Usually, during
training, multiple models are stored. Learning is interrupted when new models have multiple times
a higher loss on the validation set than previous models. Only the model with the smallest loss on
the validation set is applied for making predictions on unseen data. It could be the case that during
training, multiple times a higher loss is noticed what will decrease again later on. For each dataset,
it should be determined at what point training could be stopped without risking that a new lowest
point is skipped.

3.3.3 Test set

An additional dataset is required to evaluate how well the model generalizes and if the model is better
than other models. The generalization is tested by evaluating how thoroughly the model performs
on unseen data. This set, in combination with metrics, can be used to calculate a score. This score
can be compared with the scores of other models to determine what model is the best. Using the
validation set for the comparison is unsuitable because the model is optimized for this dataset and this
does not give information on how well the results are in general. The test set is just another subset
of all training examples which is not yet used for a different purpose. The training examples cannot
be contained in other sets so that they could not possessively influence the score that is calculated.



Chapter 4

Evaluation Setup

For the evaluation of our approach, we introduce in total three goal metrics that indicate how far we
are from generating working code to the ability to find bugs. However, the results of the metrics could
be biased because we are using machine learning. The nodes of a neural network are initialized with
random values before training starts. From this point, the network is optimized so that it can predict
the training set as good as possible. Different initial values will result in different clusters within the
neural network, what impacts the prediction capabilities. This means that metric scores could be due
to chance. In this chapter, we will address this issue.

We created a baseline with selected test projects to enable comparisons of our results with the
generated test suite of alternative test generators and manually written test suites. This baseline can
be used when unit tests can be generated. Otherwise, we do not have to use these projects. The
evaluation of any method is fine because we do not have to be able to calculate the effectiveness of
the tests. In our research, for RQ1 we perform multiple experiments with different configurations
(different datasets and different network configurations). We have to prove that a change in the
configuration will result in a higher metric score. For RQ2 we prove that with compression the
accuracy will increase, and the required time will decrease.

4.1 Evaluation

The test suite capability should be evaluated if the generator can generate test code. Nevertheless,
when the test generator is in a phase where it is unable to produce valid tests, a simple metric should
be applied which does not test the testing capability. However, it would qualify how far we are from
generating executable code because code that is not executable is unable to test something. This
set of metrics enables us to make comparisons over the whole phase of the development of the test
generator.

4.1.1 Metrics

The machine learning models can be compared to its ability to generate parsable code (parsable rate),
compilable code (compilable rate), and code that can detect faults (mutation score). The parsable
rate and compilable rate measure the test generator’s ability to write code. The difference between
these two is that compilable code is executable, while this is not necessarily true for parsable code.
The mutation score measures the test generator’s test quality.

These metrics should be used in different phases. The mutation score should be used when the
model can generate working unit tests to measure the test suite effectiveness. The compilable code
metric should be used when the machine learning model is aware of the language’s grammar to measure
the ability of writing working code. If the mutation score and compilable code metric cannot be used,
the parsable code metric should be applied. This measures how well the model knows the grammar
of the programming language.
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4.1.2 Measurement

The parsable rate can be measured by calculating the percentage of the code that can be parsed
with the grammar of the programming language. The parsable rate can be calculated by dividing
the amount of code that parses with the total amount of analyzed code. The same calculation as for
parsable rate can be applied for the compilable rate. However, instead of parsing the code with the
grammar, the code should be compiled with a compiler.

The mutation score is measured by a fork of the PIT Mutation Testing'. This fork is used because it
is combining multiple mutation generations, which leads to a more realistic mutation score [PMm17].

4.1.3 Comparing machine learning models

A machine learning model depends on random values. When we calculate metrics for a generated test
suite, the results will be different when we use another seed for the random number generator.

When we want to compare results with the metrics from Section 4.1, we have to cancel out the
effect of the random numbers. We do this by performing multiple experiments instead of running
single experiments. Then, we use statistics to test for significant differences between the two groups
of experiments. If there is a significant difference, we use statistics to prove that one group of results
is significantly better than the other group of results.

4.2 Baseline

The effectiveness of a project’s manually written test suite and of automatically generated test suites
are used as the baseline. Only test suit generators that implement search-based testing and random
testing are considered, because many open-source tools are available for these methods and they are
often used in related work. We use Evosuite? for search-based testing and Randoop® for random
testing, as these are the highest scoring open-source test suite generators in the 2017 SBST Java Unit
Testing Tool Competition in their respective categories [PM17].

Once tests can be generated, we will evaluate our approach on six projects. These projects are
selected based on a set of criteria. State-of-the-art mutation testing tool (see sec. 4.1) have to support
these projects, and the projects should have a varying mutation coverage. The varying mutation
coverage is needed to evaluate projects with a different test suite effectiveness. This way we could
determine how much test suite effectiveness we can contribute to projects with a low, medium, and
high test suite effectiveness. We divided projects with a test suite effectiveness around 30% into the
low category, projects around 55% into the medium category, and around 80% into the high category.
These percentages are based on the mutation coverage of the analyzed projects. The selected projects
can be found in Table 4.1.

Table 4.1: Mutation coverage by project

Project Java Mutation | Category
files coverage

Apache Commons Math 3.6.1 | 1,617 79% high
GSON 2.8.1 193 7% high

La4j 0.6.0 117 63% medium
Commons-imaging 1.0 448 53% medium
JFreeChart 1.5.0 990 34% low

Bcel 6.0 484 29%. low

Thttps://github.com/pacbeckh/pitest
2http://www.evosuite.org/
Shttps://randoop.github.io/randoop/
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Chapter 5

Experimental Setup

How a test suite generator can be developed in general was discussed in Chapter 3. The chapter
contains details on how training examples can be collected and explains how these examples can be
used in machine learning models. How the test generator can be evaluated is discussed in Chapter 4.
Several metrics are included, and a baseline is given. This chapter gives insight on how the test suite
generator is developed for this research. We included additional criteria to simplify the development of
the test generator. For instance, we only extract training examples from projects with a dependency
manager to relieve ourselves of manually building projects.

5.1 Data collection

Besides the criteria mentioned in Section 3.1, we added additional requirements to the projects we
gathered to make the extraction of training data less time-consuming. We also used a project hosting
website to make the process of filtering and obtaining the projects less time-consuming.

5.1.1 Additional project criteria

It is time-consuming to execute the unit test suits for all projects manually. A dependency manager
could be used to automate this for these projects. Projects that use a dependency manager use a
configuration file that defines the requirements on how to build, and most of the time also on how to
execute the project’s unit tests. Therefore, we expect that only using projects that have a dependency
manager will make this task less time-consuming. We only consider Maven' and Gradle? because these
are the only dependency managers that are officially supported by JUnit [Juna).

5.1.2 Collecting projects

We use the GitHub? platform to filter and obtain projects. GitHub has an API that can be used
to obtain a list of projects that meet specific requirements. However, the API has some limitations.
Multiple requests have to be done to perform complex queries. Each query can show a maximum
of 1,000 results which have to be retrieved in batches of maximum 100 results, and the number of
queries is limited to 30 per minute [Git]. To cope with the limit of 1,000 results per query, we used
the project size criteria to partition the projects into batches with a maximum of 1,000 projects per
batch. For our research, we need to make the following requests:

e As mentioned, we have to partition the projects to cope with the limitation of maximum 1,000
results per query. The partitioning is performed by obtaining the Java projects starting from a
certain project size and are obtained by performing 10 requests to get the results in batches of
100. This step is repeated with an updated start size until all projects are obtained.

Thttps://maven.apache.org/
2https://gradle.org/
Shttps://github.com/
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e For each project, a call has to be made to determine if the project uses JUnit in at least one
of their unit tests. This can be done by searching for test files that use JUnit. The project is
excluded when it does not meet this criterion.

e Additional calls have to be made to determine if the project has a build.gradle (for Gradle
projects) with the JUnit4 dependency or a pom.xml (for Maven projects) with the JUnit 4 de-
pendency. An extra call is required for Maven projects to check if it has the JUnit 4 dependency.
The dependency name ends either with junit4, or is called JUnit and has version 4.* inside the
version tag.

The number of requests needed for each operation could be used to limit the total number of
requests required. This can improve the total time required for this process. In our case, we expect
that it is best to check first if a project is a Gradle project before checking if it is a Maven project,
because more requests are required for Maven projects.

In conclusion, to list the available projects, one request has to be made for every 100 projects. Each
project requires additional requests: one request to check if a project has tests, one additional request
for projects that use Gradle, and at most two extra requests for projects that use Maven.

So, to analyze n projects, at minimum n * ((1/100) + 1)/30 and at maximum n * ((1/100) + 4)/30
minutes are required.

5.1.3 Training data

With the GitHub API mentioned in Section 5.1.2, we analyzed 1,196,899 open-source projects. From
these projects, 3,385 complied with our criteria. We ended up with 1,106 projects after eliminating all
projects that could not be built or tested. These projects have in total 560,413 unit tests. These unit
tests could be used to create training examples. However, the total amount of training data could be
less than the number of unit tests, because the linking algorithm might be unable to link every unit
test (as described in Section 3.2.1).

5.2 Extraction training examples

The training example extraction can be performed with the linking algorithm described in Section
3.2.1 by using the analysis techniques described in Section 3.2.2. For the extraction, we use the
training projects mentioned in Section 5.1.1.

As mentioned in Section 5.1.3, we have to analyze a large number of training projects. For our
research, we lack the infrastructure to process all projects within a reasonable time. To make it possible
to process everything in phases, we introduced a queue. This enables us to interrupt processing at
any time and continue it later without skipping any project. As mentioned in Section 3.1, we should
only include unit tests that succeeded. Thus, we fill the queue based on test reports. When all test
reports are contained, we start linking small groups of tests until everything is processed.

5.2.1 Building the queue

The queue is used by both bytecode analysis and AST analysis. All the unit tests of each training
project are contained in the queue. We structured the queue in a manner so it contains all the
information required for these tools. For instance, we have to store the classpath to perform bytecode
analysis, the source location to perform AST analysis, and we have to store the unit test class name
and unit test method name for both bytecode and AST analysis.

The source location and classpath can be extracted based upon the name of the test class. For
each test class, there exists a ”.class” and ”.java” file. The ”.class” file is inside the classpath, and the
” java” file is inside the source path. The root of these paths can be found based on the namespace
of the test class. Often, one level up from the classpath, there is a folder with other classpaths. If
this is the case, then usually there is a folder for the generated classes, test-classes, and the regular
classes. The classes used in the unit test could be in any of these folders. Therefore, all these paths
have to be included to perform a complete analysis.

13



The test class and test methods can be extracted based on the test report of each project. The test
report consists of test classes with the number of unit tests that succeeded and how many failed or
did not run for any other reason. From the report we cannot differentiate between test methods that
succeeded or failed. So, we only consider test classes for which all test methods succeeded. The test
methods from the test class can be extracted by listing all methods with a @Test annotation inside
the test class.

5.3 Training machine learning models

The last step is to train the machine learning models. In order to train the machine learning model,
we need to obtain a training and validation set. To evaluate how well the model performs, we use a
test set. We divided the gathered training examples into these three sets. We use 80% of the data for
the training, 10% for the validation, and 10% for the test set.

However, the quality of a machine learning model does not only depend on the used training data. It
also depends on the data representation. In this section, we introduced four views, namely tokenized
view, compression, BPE [SHB15], and AST. From these views, the tokenized view represents the
textual form of the data the most. The other views modify the presented information.

5.3.1 Tokenized view

With the tokenized view, every word and symbol in the input and output sequence is assigned to a
number. Predictions are performed based on these numbers instead of on the words and symbols. This
method is also used with natural language processing (NLP) [SVL14]. An example of the tokenized
view is displayed in Figure 5.1. Code is given as input, parsed, and each symbol is assigned a number.

if(l==b)a=1lelsea=2

A 8 i A KA A R

Figure 5.1: Example of tokenized view

5.3.2 Compression

Neural networks perform worse when making predictions over long input [BCS*15]. Compression
could improve the results by limiting the sequence length. For this view, we used the algorithm
proposed by Ling et al. [LGH16]. They managed to reduce code size without impacting the quality.
On the contrary, it improved their results.

This view is an addition to the tokenized view, described in Section 5.3.1. The view compresses
the training data by replacing token combinations with a new token. An example is displayed in
Figure 5.2. The input code is converted to the tokenized view, and a new number replaces repeated
combination of tokens. Additionally, in an ideal situation, it also could improve the results. For
example, when learning a pattern on a combined token is easier than learning them on a group of
tokens.
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Figure 5.2: Example of compression view

5.3.3 BPE

The tokenization system mentioned in Section 5.3.1 split on words. Nevertheless, these words somehow
belong together. This information could be usable during prediction and can be given to the neural
network by using BPE. BPE introduces a new token @@ ” to connect subsequences. The network
learns patterns based on these subsequences, and they are also applied to words that have similar
subsequences. Figure 5.3 shows an example of this technique applied to source code. In this figure,
the sequence ”int taxTotal = taxRate * total” is converted into ”int tax@Q Total = tax@Q@Q Rate *
total” so that the first "tax” in connected with Total and the last "tax” is connected with Rate.

E e E s E

When we look at the source code, we can see where the start and stop of an if statement is. So, in our
mind, it makes sense. However, this structure is not clear for a neural network. A neural network will
perform better when it can see this structure. The grammar of the programing language can be used
to add additional information. This information can be added by transforming source code into an
AST [DUSK17] and print it with an SBT [HWLJ18]. The SBT will output a textual representation
that reflects the structure of the code. An example of an AST representation is shown in Figure 5.4
and the textual representation in Listing 5.4. These examples display how an if statement is converted
to a textual representation. The textual representation is created by traversing the AST [HWLJ18].
Each node is converted to text by outputting an opening tag for the node, followed by the textual
representation of the child nodes (by traversing the child nodes), and finally by outputting a closing
tag.

Figure 5.3: Example of BPE view

5.3.4 Abstract syntax tree
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Condition Else

Figure 5.4: Example of AST view

(ifStatement
(assign (variable a)variable (number 1)number)assign
(equals (number 1)number (variable b)variable)equals
(assign (variable a)variable (number 2)number)assign
)ifStatement

Listing 5.4: Textual representation of the AST from Figure 5.4

5.4 Experiments

In Section 5.3 we explained how the machine learning models can be trained. In this section, we are
going to list all the experiments that we are going to perform. First, an ideal set of training examples
and basic network configuration are selected where an as high as possible metric score can be achieved
on. For RQ1, models with different data representations mentioned in Section 5.3 (SBT, BPE, and
Compression) are trained. Additional, a model that uses a network configuration of related research
is trained and a model with an optimized configuration is also trained. For RQ2, a model is trained
to measure the time required to train various levels of compression and a model is trained to evaluate
the development of accuracy when compression is applied.

To evaluate which experiment has the best results, we have to compare their results. In Section
4.1.3 we stated that we do test this with statistics. In this section, we go into more detail.

5.4.1 The ideal subset of training examples and basic network configura-
tion

We created a basic configuration for our experiments. This configuration is used as the basis for all
experiments. It is important that this configuration contains the best performing dataset. Otherwise,
it is unclear if bad predictions are due to the dataset or the newly used method.

For our experiments, we use the Google seq2seq project* from April 17, 2017. We use attention
in our models, as attention enables a neural network to learn from long sentences [VSPT17]. With
attention, a soft search on the input sequence is done during predicting in order to add contextual
information. This should make it easier to make predictions on large sequence sizes. The network has
a single decode and encode layer of 512 LSTM nodes, has an input dropout of 20%, uses the Adam
optimizer with a learning rate of 0.0001, and has a sequence cut-off at 100 tokens.

4https://github.com/google/seq2seq
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5.4.2 SBT data representation

Hu et al. [HWLJ18] achieved better results when translating source code into a textual representation
instead of source code into text. Applying the SBT to our experiment is beneficial because it also
could improve our results. We use a seq2seq neural network with LSTM nodes for this experiment
because this setup is the most comparable to their setup.

However, when we train our model on how an SBT can be translated into another SBT, it will
output an SBT representation as the prediction. Thus, we need to build software that can convert
the SBT back into code.

In the research where SBT is proposed, code was converted into text [HWLJ18]. There was no
need to convert the SBT back. We had to make a small modification to support back-translation.
We extended the algorithm with an escape character. In the AST information, every parenthesis and
underscore are prepended with a backslash. This makes it possible to differentiate between the tokens
that are used to display the structure of the AST and the content of the AST.

For the translation from the SBT to the AST, we developed an ANTLR® grammar that can interpret
the SBT and can convert it back to the original AST. For the conversion from the AST to code, we
did not have to develop anything. This was built-in our AST library (JavaParser®). For the validate
of our software, we converted all our code pairs described in Section 6.1.3 back from the SBT to code.

5.4.3 BPE data representation

BPE is often used in NLP and is used to achieve a new state-of-the-art BLEU score [SHB15]. They
improved up to 1.1 and 1.3 BLEU, respectively [SHB15]. We could use BPE in our research to include
links between tokens.

5.4.4 Compression (with various levels) data representation

Ling et al. [LGH™16] applied compression to generate code based on images. They found that every
level of compression increased their results. The compression level of 80% showed the best results. In
our research, we also translate to code. It is possible that compression also works in our dataset.

5.4.5 Different network configurations

During this experiment, we tried to find the optimal neural network type and neural network configu-
ration. We experiment with different numbers of layers, more or less cells per layer, and with different
types of network cells.

In addition, we also evaluated the network settings used by Hu et al. [HWLJ18], as similar as
possible. Our network size and layers are comparable to their network, but our dropout and learning
rate are not. We did not look at sequence length, because it is clear what length they used. Compared
to our configuration, Hu et al. used a dropout of 50% while we used 20%. In addition, they used a
learning rate of 0.5 while we used a rate of 0.0001. The values we utilized are the defaults of Google
seq2seq project for Neural Machine translation.

5.4.6 Compression timing

To assess the training speed of the neural network, we performed experiments with compression. To
make a comparison, we measured the time needed to do 100 epochs between no compression and
compression level 1, 2, and 10.

5.4.7 Compression accuracy

We evaluated a compression level that is close to the original textual form to test the impact on
accuracy when using compression. When compression caused the model to not generate parsable
code, we looked at the development of loss over time. The loss represents how far the validation set

Shttp://www.antlr.org/
Shttps://javaparser.org
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is from predicting the truth. We can conclude that the model is not learning when the loss increases
from the start of the experiment. This would mean that compression does not work on our dataset.
We have only used the compression level 1 dataset for this experiment.

5.4.8 Finding differences between experiment

For RQ1, we first perform all experiments to create an overview of the results. Then, we select
the experiments which we want to test whether there is a significant different result. We only do
this for experiments that improved our previous scores. As already mentioned in Section 4.1.3, we
perform the same experiments multiple times to enable statistical analysis on those groups of results.
For RQ2, we evaluate the effect of accuracy and speed during compression. For the evaluation of
speed, we measured 30 times the time that was needed to perform 100 epochs when applying no
compression and compression level 1, 2, and 10. The evaluation of the accuracy is performed with the
metrics discussed in Section 4.1. For this experiment, we ran five tests with a baseline without any
compression, and with various levels of compression. However, when compression prevents the model
from learning, we analyze the evolution of the loss on the validation set (which is used to determine
when training the model further should be stopped) as mentioned in Section 5.4.7. The experiment
was repeated five times.

The first step in comparing experiments is to prove that there is a significant difference between the
results of the experiments. If there is a difference, we use statistics to evaluate what groups introduced
the difference and what relation these differences have.

For evaluating this difference, we use hypothesis testing with analysis of variance (ANOVA), with
hQ: there is no significant difference between the experiments; hl: there is a significant difference.
We use an alpha-value of 0.05 to give a direction to the most promising setup for our research. As
there is only one variable in the data, we use the one-way version of ANOVA. For RQ1, the variable
is the dataset, and for RQ2, the variable is either the level of compression when testing speed, the
dataset when testing the accuracy, or, when accuracy cannot be measured, the epoch is the variable
when evaluating the loss.

The experiment is repeated for five times at least. So, our experiments are groups of results.
However, each run in an experiment depends on a variable. This is the epoch number for the speed
measurement of RQ2. For all other experiments, this is a random value. We need ANOVA for
repeated-measures to analyze these independent groups.

Nevertheless, when applying ANOVA for repeated-measures, there is the assumption that the vari-
ances between all groups have to be equal (sphericity) [MB89]. We violate this in our experiments.
For instance, when we use a different random value, there is a different spread in outcomes because
it depends on another variable. When this violation is made, this has to be corrected. We use the
Greenhouse-Geisser correction to do this. The correction is done by adjusting the degrees of freedom
in the ANOVA test to increase the accuracy of the p-value.

When we apply ANOVA with the correction, we can evaluate if we can reject the h0 hypothesis (no
difference between the groups). When we can reject it, then it tells us there is a difference between
the groups, without knowing where. To know what caused the difference, we need to do an additional
test. This additional test is performed with the Tukey’s multiple comparison test. This test is used
to compare the differences between the means of each group. For this test, a correction is applied to
cancel out the effect of multiple testing. The correction is needed because when more conclusions are
made, the more likely an error occurs. For example, when performing five experiments with an error
rate of X%, there is a change of 5X% that an error is made within the whole test.

When we know what group is different, we still have to find out which group of results is better.
So, we want to prove that the mean of one group is greater than the means of another group. To
test this, we perform a one-tail t-test on each individual group. We adjust the alpha according to
how many tests we perform on the same dataset to cancel out the effect of repeated measures. When
performing X tests, we divide the alpha by X to keep the total maximum error rate at 5%.
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Chapter 6

Results

In Chapter 3 and Chapter 5, it is discussed how our experiments are performed in order to answer
RQ1 and RQ2. In this chapter, we report on the obtained results. In Addition, we also report on
techniques used to generate training sets. This does not directly answer a research question. However,
the training examples are both used to train models for both RQ1 and RQ2.

6.1 Linking experiments

In this section, we report on the linking algorithm described in Section 3.2.1. We mentioned in 3.2.2
that both bytecode analysis and AST analysis use different principles, that might have a positive
impact on their linking capabilities. We run both bytecode analysis and AST analysis on the queue
mentioned in Section 5.2. We assessed how many unit tests are supported by both techniques, how
many links both techniques can make on the same dataset, how many links both techniques can make
in total, and what contradictory links were made between both techniques.

6.1.1 Removing redundant tests

The projects in our dataset, described in Section 5.1.3, contains 560,413 unit tests in total. However,
there are duplicate projects in this dataset. To perform a reliable analysis, we have to remove duplicate
unit tests. Otherwise, when a technique supports an additional link, it could be counted as more than
one extra link. The duplicates are removed based on their package name, class name, and test name.
There remain 175,943 unit tests after removing the duplicates.

Unfortunately, this method will not eliminate duplicates when the name of the unit test, class,
or package is changed, but it will remove unique tests when they have the same package, class and
method name by coincidence. Thus, the algorithm removes methods with the same naming even when
the implementation is different.

6.1.2 Unit test support

In Section 3.2.2, we claimed that AST analysis should be able to support more unit tests because it
has to analyze less. We assessed this by evaluating how many tests are supported by both techniques.
The results can be found in Figure 6.1.
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(Set 3) Tests that do not crash
bytecode analysis and AST analysis
#132,449 (73.89%)

(Set 2) Tests that do not crash
bytecode analysis
#132,675 (74.01%)

Figure 6.1: Supported unit test by bytecode analysis and
AST analysis

6.1.3 Linking capability

In Section 3.2.2, we claimed that bytecode analysis should be able to create more links, since it has
better type information than AST analysis. Additionally, AST analysis should be able to create more
links because it has to analyze less compared to bytecode analysis.

In Figure 6.2, AST analysis and bytecode analysis are both applied on a set of tests that are
supported by both methods. In Figure 6.3a and Figure 6.3b, an overview is given of all links that
these methods could make.

(Set 3) Tests linked (selti:z:: sts (Set 4) Tests
with bytecode linked with AST
lysi Rl analysis
analysis . #27,258 .
#34,572 (26.10%) (20.58%) #28,987 (21.89%

Figure 6.2: Unit test links made on tests supported by
bytecode analysis and AST analysis
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(Set 3) Tests that could

be linked by bytecode analysis
#34,739

(19,74% compared to set 1,

26.18% compared to set 2)

(Set 5) Tests that could
be linked by AST analysis
#38,132
(21,67% compared to set 1,
21.70% compared to set 4)

(a) Total link with bytecode analysis (b) Total link with AST analysis

Figure 6.3: Total link with AST analysis and bytecode analysis

In Figure 6.2 it is shown that bytecode analysis can create more links compare to AST analysis. In
Figure 6.3a and Figure 6.3b, it is shown that AST analysis could create more links as it had support
for more tests.

6.1.4 Total links

In section 6.1.1, we mentioned that we eliminated duplicates in our dataset to perform a valid analysis.
We also mentioned that the algorithm to remove duplicates properly will remove too much. A perfect
but time-consuming way to remove duplicates would be to remove duplicate based on the unit test
code and method code. When we apply this method, we could link 52,703 tests with a combination of
bytecode analysis and AST analysis. With only bytecode analysis, we were able to link 38,382 tests,
and with AST analysis we managed to link 44,412 tests.

6.1.5 Linking difference

From the 36,301 links that were made via bytecode analysis and AST analysis (Figure 6.2), 234 unit
tests were linked to other methods. In this section, we report on these differences.

Concrete classes

In 83 of the cases, a concrete class was tested. Bytecode analysis, unlike AST analysis, could link
these because it knows that they were used. AST analysis tries to match the interfaces without having
knowledge of the real class under test and incorrectly links it to another class that has some matching
names by coincidence.

Additionally, in 37 other cases, a class was tested that overrides methods from another class. AST
analysis lacks the information about what class is used when a base class is used in the type definition.
So again, AST analysis fails to create a correct link, due to its lack of awareness of the real class under
test.

However, in 25 cases there were multiple concrete classes tested within one unit test class. These
were included in the test class, since they all have the same base type. Bytecode analysis will treat
every concrete class as a different class and will divide all the matches among all classes. With
bytecode analysis, an incorrect link was made to another class that had a similar interface. AST
analysis was not aware of the concrete classes and linked the tests to the base class. Additionally,
in 6 other cases, bytecode analysis failed to link to the correct concrete class that was tested. AST
analysis linked these tests to the base class.

Subclasses

For 24 unit tests, the method that was tested was within a subclass or was a lambda function.
Bytecode analysis could detect these, because these calls are included in the call graph. We did not
support this in the AST analysis.
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Unfortunately, this also has disadvantages. In 14 other cases mocking was used. Bytecode analysis
knew that a mock object was used and linked some tests to the mock object. However, the mock
object is not tested. The unit tests validated, for example, that a specific method was called during
the unit test. Bytecode analysis incorrectly linked the test with the method that should be called and
not the method that made the call. AST analysis did not recognize the mock objects, and therefore
it could link the test to the method that was under test.

Unclear naming

The naming of a unit test does not always match the intent of the unit test. In 13 cases, multiple
methods were tested in the unit test. We only allowed our analysis tools to link to one method. Both
AST analysis and bytecode analysis were correct, but they selected a different method. In 19 cases
for AST analysis and 3 cases for bytecode analysis, an incorrect method was linked because of unclear
naming. In 8 cases, it was not clear what method performed the operation that was tested. Multiple
methods could do the operation. In 2 cases, it was not clear what was tested.

6.2 Experiments for RQ1

All executed experiments are combined into the roadmap shown in Figure 6.4. Experiments are built
on-top of the configuration of a previous category when it improves the latest results. We start with
a training a model on all training examples, followed by the experiments discussed in Section 5.4.8.
These experiments can be categorized into simplifications, combination of simplifications, different
data representations, and different network configurations.
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Naive approach

Training data simplification )
Conclusion Legend:

. Conclusion placeholder
. Experiment group

. Preliminary conclusion

. Experiment

Training data simplification follow-up

Conclusion

Combination of Different data )
simplifications representations Conclusion

Conclusion

) Different network
Conclusion configurations Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Figure 6.4: Roadmap of all experiments

6.2.1 Naive approach

First, we trained a neural network on all our training examples. We found a large number of valid
testing code when generating tests for our test set with this model. Unfortunately, the generation
of valid testing code was not due to the model knowing how to generate tests. It was because of
incorrectly dividing the training examples over the test, training, and validation set.

Division of training examples

Our dataset consists of methods that are linked with multiple unit tests. Therefore, we have n
methods, and each of these n methods can be linked to m different unit tests. This means that
multiple training examples share the same method code, but have different test code. Pairs with the
same method code were divided over the training, test, and validation set. Because of this division,
the neural network already knew how some of the methods, those which were used during evaluation,
could be converted to test code. This made it very easy for the network to generate tests, as it was
already taught how to generate answers in some cases. This led to a false evaluation score.
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To resolve this issue, examples that have the same method body were grouped and assigned to a
single dataset. This will prevent that code with the same implementation is assigned across the test,
validation, and training set. However, because groups are assigned to sets instead of single tests, it
could happen that the sets will not have the intended size. Nevertheless, a couple more or less training
examples in a set will not make a difference. Therefore, we performed our experiments with the sets
even if they were of different sizes.

Naive approach with correct divided training examples

After correctly dividing the training examples, the new model was trained. With this model, we only
managed to generate parsable code. We were unable to generate any code that is compilable or tests
something. As shown in Table 6.1, we were able to generate 15.45% parsable code.

Table 6.1: Details on naive approach experiment

Result Result value
Experiment short name S1

Training examples 52,588

Examples in training set 42,070

Examples in validation set 5,259

Examples in test set 5,259

Unique methods in test set 1,346

Parsable predictions on test methods | 208

Parsable score 15.45% (208/1,346)

Experiment results

We expect the cause of the low parsable code rate is due to the high complexity of the training data.
During manual analysis, we found the following complexities:

e Training examples were cut-off to a maximum of 100 tokens, because of our configured sequence
length

e There are training examples that use more complex language features such as inheritance and
default methods

e The training set contains token sequences that are used only once

An overview of the current results are shown in Figure 6.5.

Training data simplification .
Conclusion Legend:
. Conclusion placeholder
. Experiment group

. Preliminary conclusion

. Experiment

S1: All training examples Training data simplification follow-up

Conclusion

15.45% parsable code
52,585 training examples

Combination of Different data )
simplifications representations Conclusion

Conclusion

Figure 6.5: Experiments within the native approach group
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6.2.2 Training data simplification

In these experiments, we are trying to reduce the complexity that was encountered with the naive
approach. A list of complexities can be found in Section 6.2.1. We tried to train a model on less
complex training examples, training examples that have common subsequences, and training examples
with a limited size.

Less complex training data

It can be possible that the code is too complex to generate code. We filtered the training examples
based on code complexity. We excluded all training examples that test classes which use inheritance
or default methods. This is done by selecting only training examples that were linked by the AST
analysis. AST analysis does not support these features. In addition, we only selected examples that
were also linked by bytecode analysis. This will also remove all the incorrect links that were discussed
in section 6.1.5. With these criteria, we achieved 14.46% parsable code. More details of the experiment
can be found in Table 6.2.

Table 6.2: Details on experiment with less complex training data

Result Result value
Experiment short name S2

Training examples 30,485
Examples in training set 24,378
Examples in validation set 3,049
Examples in test set 3,058

Unique methods in test set 802

Parsable predictions on test methods | 116

Parsable score 14.46% (116/802)
Last best model S1
Last best model parsable code 15.45%

Training examples with overlapping subsequences

Many training examples use unique token combinations. It can be the case that the network is unable
to make predictions on sequences that do not occur in other examples. To overcome this problem,
we used the compression algorithm from Ling et al. [LGH'16]. The training examples used, are
those which are reduced by more than 80% when they are compressed ten times. This will reduce
the number of training examples that do not share token sequences with other training examples. We
achieved 12.41% parsable code with the training examples that have common subsequences. More
details on the experiment can be found in Table 6.3.

Table 6.3: Details on experiment with common subsequences

Result Result value
Experiment short name S3

Training examples 47,178
Examples in training set 37,740
Examples in validation set 4,720
Examples in test set 4,718

Unique methods in test set 975

Parsable predictions on test methods | 121

Parsable score 12.41% (121/975)
Last best model S1

Last best model parsable code 15.45%
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Limited size

In our default network configuration, we cut off sequences at a sequence length of 100 tokens. To
prevent the training examples being cut off, we filtered the examples on a maximum size of 100 tokens.
With this criterion, we achieved 69.79% parsable code. More details on the experiment can be found
in Table 6.4.

Table 6.4: Details on experiment with maximum sequence size 100

Result Result value
Experiment short name S4

Training examples 11,699
Examples in training set 9,358
Examples in validation set 1,170
Examples in test set 1,171

Unique methods in test set 374

Parsable predictions on test methods | 261

Parsable score 69.79% (261/374)
Last best model S1

Last best model parsable code 15.45%

Experiment results

As shown in Figure 6.6, only the experiment where we limited the sequence size results in a higher
percentage of parsable code.

$2: No concrete classes
and no default methods

C1:These optimizations are Conclusion Legend:

poiithcbottiencoic . Conclusion placeholder
14.46% parsable code .
30.482 training examples . Experiment group

. Preliminary conclusion

. Experiment

Naive approach Training data simplification follow-up

S3: Examples with common c Jusi
subsequences opciuston
12.41% parsable code
47,175 training examples

S4: Max 100 length Combination of Different data )
simplifications representations Conclusion

69.79% parsable code
11,699 training examples

Conclusion

Figure 6.6: Experiments within the training data simplification group

6.2.3 Training data simplification follow-up

We noticed an improvement from 15.45% to 69.79% parsable code when we decreased the sequence
length of the training examples. However, the improvement could be due to the smaller number of
training examples or because the network trains better on small sequence size. We trained additional
models to evaluate what caused the different results.

Increase sequence length to 200 with limited training examples

We increased the sequence length to analyze whether the decreased sequence length resulted in more
parsable code. In this experiment, we increase the maximum allowed sequence length to 200 and
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accepted examples with a maximum sequence length of 200 tokens. We kept the same number of
training examples, so we can monitor what happens when we allow longer sequences. As shown in
Table 6.5, we achieved 31.78% parsable code with this configuration.

Table 6.5: Details on experiment with maximum sequence size 200 and limited number of training

examples
Result Result value
Experiment short name S5
Training examples 11,699
Examples in training set 9,359
Examples in validation set 1,170
Examples in test set 1,170
Unique methods in test set 428
Parsable predictions on test methods | 136
Parsable score 31.78% (136/428)
Last best model S4
Last best model parsable code 69.79%

Increase sequence length to 200 and use more training example

The decreased parsable rate when using a sequence length of 200 and the same number of training
examples as the experiment with sequence length 100, could be caused by too few training examples
to make a prediction over a larger sequence. To evaluate this, we increased the number of training
examples. With these criteria, we achieved a 32.18% parsable code. More details on this experiment
can be found in Table 6.6.

Table 6.6: Details on experiment with maximum sequence size 200 and more training examples

Result Result value
Experiment short name S6

Training examples 28,182
Examples in training set 22,546
Examples in validation set 2,818
Examples in test set 2,818

Unique methods in test set 808

Parsable predictions on test methods | 260

Parsable score 32.18% (260/808)
Last best model S4

Last best model parsable code 69.79%

Increase sequence length to 300 and limited training data

Previously, we observed that increasing the training examples reduced the parsable rate. Additionally,
we also experimented with a maximum sequence length of 300 and a limited set of training examples
to validate if the same effect occurs. As shown in Table 6.7, we only achieved 16.52% parsable code
with the increased sequence length.

27



Table 6.7: Details on experiment with maximum sequence size 300 and limited number of training

examples
Result Result value
Experiment short name S7
Training examples 11,699
Examples in training set 9,349
Examples in validation set 1,177
Examples in test set 1,173
Unique methods in test set 345
Parsable predictions on test methods | 57
Parsable score 16.52% (57/345)
Last best model S4
Last best model parsable code 69.79%

Experiment results

As shown in 6.7, a sequence length of 100 led to the highest parsable rate. Reducing the size further
could improve the results. However, with these criteria, we ended up with only 11,699 training
examples out of 52,585 training examples. This is a reduction of 77.75%. We did not perform more
experiments with limiting the sequence length further, because this also limits the number of training
examples that we can use. Experimenting further with a small set and filtering can lead to unexpected
results. In conclusion, the experiments in this section did not contribute to a higher parsable score.
An overview of the experiments is shown in Figure 6.7.

Naive approach

Training data simplification

S$5: Max 200 length

31.78% parsable code
28,182 training examples

Combination of
simplifications

$6: Max 200 length same
number of examples as S4

32.18% parsable code
11,699 training examples
S7: Max 300 length same

number of examples as S4

16.52% parsable code
11,699 training examples

Different data
representations

Figure 6.7: Experiments in optimizing sequence length

C2: More training examples
do not improve the parsable
performance

C3: Attention should reduce
the token length penalty.
However, length is even too
large for attention.

Conclusion

Conclusion

Legend:
. Conclusion placeholder
. Experiment group

. Preliminary conclusion

. Experiment

6.2.4 Combination of simplifications

As described in Section 6.2.3, the training set of our best model is limited by a sequence length of
100 tokens. In this section, we experimented with combinations of filters described in section 6.2.2.
Training examples with common subsequences and limited sequence length

When we combined the experiments with limiting the training examples (Section 6.2.2) and only
using training examples with common subsequences (Section 6.2.2), we achieved 70.50% parsable
code. More details on this experiment can be found in Table 6.8. Compared to the last best model
score, this combination increased the percentage of parsable code by 0.71 percentage points.
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Table 6.8: Details on experiment with maximum sequence size 100 and common subsequences

Result Result value
Experiment short name S8

Training examples 9,998
Examples in training set 7,989
Examples in validation set 1,005
Examples in test set 1,004

Unique methods in test set 278

Parsable predictions on test methods | 196

Parsable score 70.50% (196/278)
Last best model S4

Last best model parsable code 69.79%

No concrete classes and default methods and limited sequence length

When we combined the experiments with limiting the training examples (Section 6.2.2) and removed
more advanced language features (Section 6.2.2), we achieved 65.07% parsable code. More details on
this experiment can be found in Table 6.9. Compared to the last best model score, this combination
did not improve the percentage of parsable code.

Table 6.9: Details on experiment with maximum sequence size 100 and no concrete classes and no
default methods

Result Result value
Experiment short name S9

Training examples 6,749
Examples in training set 5,396
Examples in validation set 677

Examples in test set 676

Unique methods in test set 229

Parsable predictions on test methods | 149

Parsable score 65.07% (149/229)
Last best model S8

Last best model parsable code 70.50%

Experiment results

As shown in Figure 6.8, we were able to improve the percentage of parsable code from 69.79% to
70.50% by only using training examples with common subsequences. This is a small improvement
and could be caused randomly. We address this issue in Section 6.2.8.
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Figure 6.8: Experiments in combination of optimizations

6.2.5 Different data representations
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Conclusion

Representing data in a different format could make it easier for the network to find patterns. In this

section, we investigated compression and BPE.

Compression

With compression, tokens that belong together could be merged. Therefore, the neural network does
not need to learn that a combination of multiple tokens has a specific effect. This effect only has to be
linked to one token. We applied compression on the last best-performing dataset. We trained models
with compression levels 1 to 10 (S10). The change in the maximum size of the training examples are
shown in Figure 6.9. When we analyze the models after training, we can observe that the model’s
loss increases immediately. This means that the model is unable to find patterns in the dataset and
that compression is not suitable for our dataset. This is further investigated in Section 6.3.2. More

details on this experiment can be found in Table 6.10.
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Figure 6.9: Maximum sequence length differences with various levels
of compression
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Table 6.10: Details on experiment with maximum sequence size 100, common subsequences, and

compression
Result Result value
Experiment short name S10
Training examples 9,998
Examples in training set 7,989
Examples in validation set 1,005
Examples in test set 1,004
Unique methods in test set 278
Parsable predictions on test methods | 0
Parsable score 0% (0/278)
Last best model S8
Last best model parsable code 70.50%

BPE

With BPE, we tell the neural network that two tokens belong together. We applied BPE to the last
best performing dataset. With these criteria, we achieved 57.55% parsable code. More details on this
experiment can be found in Table 6.11.

Table 6.11: Details on experiment with maximum sequence size 100, common subsequences, and

BPE
Result Result value
Experiment short name S11
Training examples 9,998
Examples in training set 7,989
Examples in validation set 1,005
Examples in test set 1,004
Unique methods in test set 278
Parsable predictions on test methods | 160
Parsable score 57.55% (160/278)
Last best model S8
Last best model parsable code 70.50%

Experiment results

Both compression and BPE did not improve our results. An overview of the experiments can be found
in Figure 6.10.
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Figure 6.10: Experiments with different data representations

6.2.6 Different network configurations
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A different configuration of the neural network can result in different outcomes. We are applying
a neural network similar to one used in another research, and fine-tune the model ourselves. For
example, we tune the number of layers inside the network. The neural network should be able to
make more complex conclusions when more layers are used. The first layer could learn how simple
patterns can be applied, and the second layer could learn how a combination of simple patterns can
form a more complex pattern. Additionally, when the size of each network layer is increased, more
patterns could be captured by each layer. GRU cells can be used instead of LSTM cells. The dropout
can be increased, which will remove the connection from some cells to other cells. This makes the
cells more independent of each other. An overview of experiments on the network configuration can
be found in Table 6.12. More details about the training set and the last best performing model can

be found in Table 6.13.

Table 6.12: Overview of all network experiments

Name

Description

Parsable rate

S12

1,024 LSTM cells

67.27% (187/278

S13

2 Output layers

78.42% (218/278

S14

GRU cells

71.22% (198/278

S15

2,048 LSTM cells

S16

4 Output layers

64.39% (179/278

S17

2 input and 4 output layers

)

( )

( )

51.44% (143/278)
o

62.59% (174/278

S18

Network of related research [HWLJ18]

0 (0/278)

519

Dropout of 50%

72.30% (201/278)

520

Dropout of 50% and 2 output layers

86.69% (241/278)
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Table 6.13: Details on experiment with maximum sequence size 100, common subsequences, and
different network configurations

Result Result value
Training examples 9,998
Examples in training set 7,989
Examples in validation set 1,005
Examples in test set 1,004

Unique methods in test set 278

Last best model S8

Last best model parsable code | 70.50%

Conventional neural network

Additional experiments with a conventional neural network were performed. However, we were unable
to make predictions on a sequence length of more than 50 tokens. This could be caused by hardware
or software limitations. We did not explore the problem in detail, because, in related research, CNNs
only improve the BLEU score of their prediction by 4.26% (61.19/58.69) [ZZLW17]. We expect that
an improvement like this will not have a big impact on generating test code.

SBT

We also performed tests with SBT. We were unable to generate parsable code with this technique.
More information about the results can be found in Section 6.4.

Experiment results

An overview of all the experiments can be found in Figure 6.11. It can be concluded that S20 performs
the best. This model uses two output layers and a dropout of 50%.
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We manually analyzed the results of the trained models. The generated test code is often not related
to the method that was used as input. For example, when we want to predict a test for the method
updateVersion, shown in Code 6.5, then the model will generate the test shown in Code 6.6. This
test is unrelated to the code. The expected output can be found in Code 6.7.

public void updateVersion() {
++version;

}

Listing 6.5: Unit test prediction input
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@Test public void testGetSequence() {
assertEquals (1, m_SIZE.getBytes());
}

Listing 6.6: The generated unit test

@Test public void testUpdateVersion() {
target .updateVersion();
String result = target.getVersion ();
assertThat(result, is(”17));

}

Listing 6.7: Expected unit test

6.2.8 Experiment analysis

An overview of all experiments is shown in Figure 6.12.
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12.41% parsable code
47,175 training examples

$4: Max 100 length

69.79% parsable code
11,699 training examples

C1:These optimizations are
not the bottleneck.

$5: Max 200 length

31.78% parsable code
28,182 training examples

$8: S3 and S4 combined

70.50% parsable code
9,998 training examples

$9: S2 and S4 combined

65.07% parsable code
6,749 training examples

C7: Examples with low
repetition do not reduce the
amount of parsable
predictions

$6: Max 200 length same
number of examples as S4

32.18% parsable code
11,699 training examples

S$7: Max 300 length same
number of examples as S4

16.52% parsable code
11,699 training examples

$10: Compression
Level 1-10:

0% parsable code
9,998 training examples

$11: BPE

57.55% parsable code
9,998 training examples

$12: 1024 cells

67.27% parsable code
9,998 training examples

$13: 2 Output layers

78.42% parsable code
9,998 training examples

$14: GRU cells

71.22% parsable code
9,998 training examples

$18: Network of related
research

0% parsable code
9,998 training examples

C2: More training examples
do not improve the parsable
performance

C3: Attention should reduce
the token length penalty.
However, length is even too
large for attention.

C4: Compression removes
too much information

C5: BPE does not work
because of linking unrelated
tokens

$15: 2048 cells

51.44% parsable code
9,998 training examples

$16: 4 Output layers

64.39% parsable code
9,998 training examples

62.59% parsable code

$19: Only high dropout

72.30% parsable code
9,998 i ng examples

S$17: 2 input 4 output layers

C6: The network gets too
large to generalize

C8: An additional output
layer improves generalization.
Too many will negatively
impact the parse rate

C9: More input layers
reduce how well the
network can generalize

C10: A higher dropout
could improve results

C11: A high learning rate
adjusts parameters too
much but a higher dropout
could improve results

Figure 6.12: All experiment results

The percentages in the figure are not statistically checked. As mentioned in Section 5.4.8, we only
analyzed the experiments that improved our results. These are experiments S4, S8, S13, and S20. In
total, we trained five models for each experiment. The parsable scores are shown in Table: 6.14. The
columns represent the experiments, and the rows are the different runs.

Table 6.14: Parsable code score for the most important experiments with different seeds

ID | Random number | S4 S8 S13 S20

1 5,274 56.42% (211/374) | 55.04% (153/278) | 67.99% (189/278) | 73.38% (204/278)
2 8,526 59.36% (222/374) | 52.52% (146/278) | 68.71% (191/278) | 75.54% (210/278)
3 1,873 67.11% (251/374) | 50.72% (141/278) | 60.43% (168/278) | 73.74% (205/278)
4 1,944 67.91% (254/374) | 59.35% (165/278) | 64.03% (178/278) | 70.14% (195/278)
5 1,234 69.79% (261/374) | 70.50% (196/278) | 78.42% (218/278) | 86.69% (241/278)

For our statistical check, we came up with two hypotheses:

e HO: There is no significant difference between the samples
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e H1: There is a significant difference between the samples

We apply the algorithms discussed in Section 5.4.8 to evaluate if HO can be rejected. The results
of the experiments can be found in Table: 6.15. We have a p-value lower than 0.05, so we can reject
HO. This means that there is a difference between the groups.

Table 6.15: ANOVA experiment results

Source of variation | Sum of squares | Degrees | Mean square | F-value | P-value
of free-
dom
Between groups 873.6 3 291.2 15.9 0.0030
Within groups 509.8 4 1274 6.961 0.0039
Residual 219.7 12 18.31
Total 1,603 19

We apply the algorithms discussed in Section 5.4.8 to evaluate what the differences in results are.
The results of the experiments can be found in Table: 6.16. We can reject HO for the experiments
that have a p-value lower than 0.05. That means that there is a statistically significant difference
between S8 and S13, S8 and S20, and S13 and S20.

In Section 6.2.4, we discussed that common subsequences with a maximum sequence length of 100
(S8) improved the parsable score of a maximum sequence length of 100 (S4) by 0.71 percentage points.
When we calculate the averages of the follow-up experiments in Table 6.14, then S4 has an average
of 57.63%, while S8 has an average of 64.12%. We did not find a significant difference between these
experiments. Therefore, we cannot conclude what filter on the dataset is better.

Table 6.16: Difference between experiments

Experiment | Mean Difference | 95% confidence | Adjusted p-value
interval of differ-
ence

S4 vs. S8 6.492 -5.739 to 18.72 0.2757

S4 vs. S13 -3.796 -19.12 to 11.53 0.7544

S4 vs. S20 -11.78 -24.34 to 0.7741 0.0612

S8 vs. S13 -10.29 -18.4 to -2.18 0.0225

S8 vs. S20 -18.27 -27.62 to -8.927 0.0047

S13 vs. S20 -7.986 -13.74 to -2.232 0.0164

As shown in Table 6.16, S20 should have better results than S8 and S13, and S13 should have better
results than S8. We came up with the following hypothesis for the directional t-test:

e HO: There is no significant difference between the results of Sx and Sy
e H1: The results of Sx are significantly higher than the results of Sy

We apply the directional t-test discussed in Section 5.4.8 to evaluate the hypothesis. The results
are displayed in Table 6.17. For these experiments, we corrected the alpha to 0.05/3 to keep the same
chance on an error. In these tables, it is shown that the p-value is lower than 0.02 (0.05/3). This
means that HO can be rejected in all cases.
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Table 6.17: Directional t-test of significantly different experiments

S8 vs. S13 S8 vs. S20 S13 vs. S20
Number of pairs 5 5 5
One- or two-tailed P value? | One-tailed One-tailed One-tailed
T-value 5.165 7.959 5.65
Degrees of Freedom 4 4 4
Averages 57.626 - 67.916 | 57.626 - 75.898 | 67.916 - 75.898
P-Value 0.0033 0.0007 0.0024

6.3 Experiments for RQ2

In this section, we address RQ2. We compared the time to compress across various levels of com-
pression and what compression does with the accuracy of the model. In Section 6.2.5, we already
observed that any level of compression prevents the model from predicting parsable code. In Section
5.4.7, we discussed that we should analyze the loss instead of accuracy if the model is unable to find
patterns.

6.3.1 Compression timing

We trained a neural network with uncompressed training examples, and other neural networks with
training data that have a compression level of 1, 2, or 10. The results are visualized in Figure 6.13
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Figure 6.13: Compression timing scatter plot
We hypothesized that compression will impact the time needed to make predictions. This leads to
the following hypotheses:
e HO: There is no significant difference between the samples
e H1: There must be an alternative hypothesis

We applied the algorithms discussed in Section 5.4.8 to evaluate if HO can be rejected. The results
of the experiments can be found in Table: 6.18. We have a p-value lower than 0.05. Thus, HO can be
rejected. This means that there is a significant difference between the groups.
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Table 6.18: ANOVA on compression timing

Source of variation | Sum of squares | Degrees | Mean square | F-value | P-value
of free-
dom
Between groups 128,350 3 42,783 16,930 <0.0001
Within groups 481.4 30 16.05 6.35 <0.0001
Residual 2274 90 2.527
Total 129,059 123

We applied the algorithms discussed in Section 5.4.8 to evaluate what the differences are in duration.
The results of the experiments can be found in Table: 6.19. We found a p-value lower than 0.05 for
all groups, except for no compression paired with compression level 1. This means that there is
a significant difference between all groups, except for the group with no compression paired with
compression level 1.

Table 6.19: Difference in compression timing

Experiment Mean 95.00% confi- | Adjusted p-value
Differ- dence interval of
ence difference
Compression level 1 vs. No compression -0.8976 -1.85 to 0.05495 0.0704
Compression level 2 vs. No compression -12.75 -14.42 to -11.08 <0.0001
Compression level 10 vs. No compression -77.93 -79.12 to -76.74 <0.0001
Compression level 2 vs. Compression level 1 -11.85 -12.8 to -10.9 <0.0001
Compression level 10 vs. Compression level 1 | -77.04 -77.54 to -76.53 <0.0001
Compression level 10 vs. Compression level 2 | -65.19 -66.17 to -64.2 <0.0001

To test if the time needed for compression reduces when the compression level increases, we formu-
lated the following hypothesis:

e HO: There is no difference in timing of Cx and Cx+1

e H1: The timing of Cx+1 is significantly lower than the timing of Cx

We applied the directional t-test discussed in Section 5.4.8 to evaluate the hypothesis. An overview
of the p-values can be found in Table 6.20. HO can be rejected for all tested compression levels.

Table 6.20: Directional t-test on compression timing

Experiment P-value
No compression vs. Compression level 2 <0.0001
No compression vs. Compression level 10 <0.0001

Compression level 1 vs. Compression level 2 <0.0001
Compression level 1 vs. Compression level 10 | <0.0001
Compression level 2 vs. Compression level 10 | <0.0001

6.3.2 Compression accuracy

We hypothesized that compression will prevent the model from training. In this section, we want
to prove that the loss in an epoch is not due to chance. When the loss difference between multiple
models is not by chance, and the loss increases from the first epoch when the number of epochs is
higher, then we have proven that compression does not work on our dataset.

For our next experiments, we trained five new neural network models with a compression level of
one. We used a compression level of one as this is closest to a training set for which we can generate
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parsable code (based on S8 in Figure 6.8). We visualized the loss on the validation set in Figure 6.14.
The higher the loss, the worse the model performs.
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Figure 6.14: Loss for every 100th epoch

The first step in this experiment is to show that our results are not because of chance. Therefore, we
want to determine if the loss between every epoch is different. We formulated the following hypotheses:

e HO: There is no significant difference between the samples

e H1: There is a significant difference between the samples

We applied the algorithms discussed in Section 5.4.8 to evaluate whether HO can be rejected. The
results of the experiments can be found in Table: 6.21. We have a p-value lower than 0.05, so we can
reject HO. This means that there is a significant difference between the groups.

Table 6.21: ANOVA experiment for compression loss

Source of variation | Sum of squares | Degrees | Mean square | F-value | P-value
of free-
dom
Between groups 52.96 9 5.885 40,246 <0.0001
Within groups 0.002947 4 0.0007368 5.039 0.0025
Residual 0.005264 36 0.0001462
Total 52.97 49

We applied the algorithms discussed in Section 5.4.8 to evaluate what the differences in the loss
are. The results of the experiments can be found in Table: 6.22. We found a p-value lower than 0.05
for all groups. This means that there is a significant difference between all the groups.
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Table 6.22: Difference in loss groups

Experiment Mean 95.00% confi- | Adjusted p-value
Differ- dence interval of
ence difference
Epoch 200 vs. Epoch 100 1.166 1,132 to 1,201 <0,0001
Epoch 300 vs. Epoch 200 | 0.5446 0,5224 to 0,5668 <0,0001
Epoch 400 vs. Epoch 300 | 0.396 0,3729 to 0,4192 <0,0001
Epoch 500 vs. Epoch 400 | 0.3231 0,3063 to 0,3398 <0,0001
Epoch 600 vs. Epoch 500 | 0.2656 0,2211 to 0,3101 <0,0001
Epoch 700 vs. Epoch 600 | 0.2346 0,1818 to 0,2873 0.0002
Epoch 800 vs. Epoch 700 | 0.1964 0,1602 to 0,2325 0.0001
Epoch 900 vs. Epoch 800 | 0.1888 0,1589 to 0,2188 <0,0001
Epoch 1000 vs. Epoch 900 | 0.1464 0,1017 to 0,191 0.0005

To test if the loss increases, we formulated the following hypothesis:
e HO: There is no significant difference between the loss of Ex and Ex+1
e H1: The loss of Ex+1 is significantly higher than the loss of Ex

We applied the directional t-test discussed in Section 5.4.8 to evaluate the hypothesis. An overview
of the p-values can be found in Table 6.23. We can reject HO for all compression levels, meaning that
the loss increases after every epoch.

Table 6.23: Directional t-test on compression loss

Experiment P-value
Epoch 200 vs. Epoch 100 <0.0001
Epoch 300 vs. Epoch 200 <0.0001
Epoch 400 vs. Epoch 300 <0.0001
Epoch 500 vs. Epoch 400 <0.0001
Epoch 600 vs. Epoch 500 <0.0001
Epoch 700 vs. Epoch 600 <0.0001
Epoch 800 vs. Epoch 700 <0.0001
Epoch 900 vs. Epoch 800 <0.0001
Epoch 1,000 vs. Epoch 900 | <0.0001

6.4 Applying SBT in the experiments

In Section 6.2 and 6.3, we trained our models based on a textual representation. However, in this
form, the structure of the grammar is invisible. With SBT, this information can be captured in a
textual form so that the neural network can learn the code structure. This could make it easier
for the machine learning algorithm to capture the structure of the code and improve its prediction
capabilities [HWLJ18]. In Section 6.2.6 we mentioned that we applied SBT to our experiments, but
that we could not get any parsable code. This chapter addresses the problems that we encountered.

6.4.1 Output length

Our goal is to translate source code into tests. However, the SBT representations are very long. When
we select the 10,000 smallest training examples, we have a maximum token length of 714 compared
to 91 tokens maximum for method code. The problem of a larger sequences is that it increases the
memory usage on the GPU. In this case, SBT has 7.85 (714/91) times the size of normal code. This
can cause issues during training.

Limiting the training examples is not an option. The number of training examples is already low
when we compared it to the number of training used in related research mentioned in Section 3.1.3.
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6.4.2 Training

To support the sequence length of 714, we could only use a neural network with LSTM nodes of size
64 instead of 512. Using LSTM nodes of size 512 was impossible because of memory limitations. We
selected the smallest 9,998 training examples for method code and 9,995 training examples for SBT.
We trained a model for both sets with this network setup. We could not generate valid SBT trees. We
were able to generate parsable method code. However, the generated code did not make any sense.
It consists of method bodies that asserted two empty string. The results are inconclusive, because it
was impossible to use a reasonable neural network in combination with SBT.

6.4.3 First steps to a solution

We tried to reduce the AST structure as much as possible by removing redundant layers. For example,
in the AST, a NameExpr only has a SimpleName as a child which only has a string as a child. This
makes the SimpleName in between redundant, so we removed it. With this type of compression, we
were able to reduce the maximum token size of the first 10,000 training example by 20.17% (714 to
570). However, this reduction is too small to enable the use of a reasonable size neural network. It
should at least be possible to use a network of 512 LSTM nodes in the encoder and decoder.

We also tried to use the compression algorithm of Ling et al. [LGH"16]. However, the algorithm
will increase the vocabulary size because there are more repeated token combinations. An overview of
the compression levels can be found in Table 6.24. This greater vocabulary size increased the memory
needed to train the model, which made training the model impossible.

Table 6.24: SBT compression effect

Level of compression | Vocabulary size | Max sequence size
None 9,123 570
Level 2 176,546 220
Level 3 227,575 168
Level 4 237,795 144
Level 5 222916 136
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Chapter 7

Discussion

In this chapter, we discuss our experiment results on i) what neural network solution performs best to
generate unit tests, and ii) how compression affects accuracy and performance. First, we start with a
summary of our most important results.

7.1 Summary of the results

We noticed that we could extract more training examples by using an AST analysis instead of a
bytecode analysis. However, bytecode analysis has still advantages over AST analysis. Only bytecode
analysis can extract training examples when in the example the base type of the class under test is
used. This means even if AST analysis can extract more training examples, bytecode analysis is still
needed in order to get a dataset that includes examples that use basic object-oriented code.

When we train a neural network, then we see an improvement in the amount of parsable code gener-
ated when we only including examples with a sequence length of maximal 100 tokens. Increasing the
sequence length more reduces this. There is no improvement noticed when different or a combination
of other optimizations are evaluated. Besides, there was also no improvement when different data
views are applied. One of the data views was the compressed view. For this view, we saw a reduction
of time needed to train models. However, with this view, we were unable to produce parsable code.
When we applied SBT, we also could not generate working models. This was since SBT had a large
negative impact on sequence length. This made it impossible for our neural network to train on this
data. Tuning the neural network configuration improved how much parsable code could be generated.
There was an improvement when the number of output layers is set to two instead of one, and when
a 50% dropout is configured. We are unable to generate test code, but the increase in the amount of
parsable code could indicate that the neural network is starting to learn how code is written. Writing
code itself is complicated. When we can improve our test generator further, then we could start to
see patterns in the predictions on how code can be tested.

7.2 RQ1l: What neural network solutions can be applied to
generate test suites in order to achieve a higher test suite
effectiveness for software projects?

For this research question, we first addressed the parsable code metrics that we used to measure
performance. This metric is critical in this research, and is used to guide the research towards more
promising solutions. With this metric, we analyzed the results of various models.

7.2.1 The parsable code metric

The application of machine learning to test suite generators is very new. For this research, only
the generation of parsable code was achieved. Unfortunately, this does not give any insights into
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how well the code tests. It will give an idea if the machine learning model starts to understand the
programming language. This is a first step towards generating test code. However, more research on
other metrics could give a better insight into the progress towards a unit test generator using machine
learning.

7.2.2 Training on a limited sequence size

A big part of generating more parsable code was filtering training examples. A great improvement
was made when we limited training examples to a sequence length of 100 tokens. The effect of better
predictions with smaller sequences was also noticed in other research by Bahdanau et al. [BCST15].
We confirm this finding.

7.2.3 Using training examples with common subsequences

During our experiments, we got better results when we only used training examples with common
subsequences and a sequence length of 100 tokens. Later, it turned out that it did not improve our
results. The reason why this should have worked is that the neural network can learn context. This is
related to research into BPE. With BPE, translation scores were improved by linking words that are
written differently (loving - love) but have (almost) the same meaning [SHB15]. So, including training
examples that are related to other training examples should give the neural network the ability to
learn more complex transformations. However, when we only include training examples with a lot of
context, we make it harder for the model to make predictions. In addition, the test set also consists of
training examples with a lot of context. Therefore, a lower score in parsable rate does not necessarily
mean that it is worse in predicting test code. Future research could give more insight when a metric
can be applied that is more accurate in the development phase of the test generator.

We performed many experiments on top of this. When this set indeed reduces the ability to write
test code, then this only means that we could have achieved a higher parsable rate. This will not
invalidate any results.

7.2.4 BPE

Applying BPE on our datasets reduced the amount of parsable code that could be generated. We
used BPE to include relations between words and symbols instead of word part. Other research found
that in NLP the addition of the relation between word part improves results [SHB15]. A reason why
this does not work on words in code could be because there are too many relations that make no
sense. For example, because of BPE, the word stop in both stopSign and stopWalking share some level
of meaning. These two identifiers do not have much in common when translating to code. This could
be the reason why we observed a drop in the percentage of generated parsable code. However, we did
not perform a statistical check to validate these results.

7.2.5 Network configuration of related research

During the experiments, we have tried various network configurations. One configuration we tried
was similar to the network used by Hu et al. [HWLJ18], which they used to summarize code. This
configuration did not work with our experiments, because they used a too high learning rate for our
data. With a higher learning rate, less time is needed to create the model, since great steps are taken
during the learning process. A high learning rate could mean that it never reaches the ideal model.
However, our model did not learn anything. We expect that our data is harder to generalize, so
adjusting each training step too much will cause the modifications to be too specific.

7.2.6 SBT

We were unable to use SBT to generate code, since it outputs sequences which are too long. We were
unable to reduce the sequences to a level where we can train a sufficient neural network. Also, we
could not compress the sequences too much, because the whole point is to add additional information.
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When we compress it too much, we lose this information. In future research, other machine learning
solutions could be applied which are capable of handling this kind of data. For instance, instead of
translating based on words, translations could be done based on sections [HWZD17].

7.2.7 Comparing our models

In Section 6.2, we observed big differences between experiments. In Section 6.2.8, we did not find a
statistical correlation between all these experiments. There still could be a correlation, but it was
not noticeable. This could be caused by a too small sample size. An overview of all experiments
can be found in Figure 6.12. Table 6.17 shows that the result of S20 is better than S8 and S13, and
the result of S13 is better than S8. From these relations, we can conclude that on our dataset S8
we have better results when we use one input layer and two output layers instead of one input layer
and one output layer. In addition, by adding a dropout of 50% to this configuration will improve the
results further. The reason for the improved results is that, when adding another output layer and
50% dropout, the network now can make more advanced conclusions and the network can make more
independent decisions. The first layer can capture the general conclusion and the second layer can
make more advance conclusions based on the previous conclusions.

7.3 RQ2: What is the impact of input and output sequence
compression on the training time and accuracy?

Compression can make the application of the used machine learning technique easier, because one of
the weak points of our technique is long sequence lengths. Compression could improve the results
by solving this problem and reduces the time needed to train models. For compression, we used the
algorithm proposed by Ling et al. [LGHT16].

7.3.1 Training time reduction

We noticed an improvement when applying the compression to the input and output sequences.
Unfortunately, Ling et al. [LGH"16] did not report on the time reduction of the training time of their
models. However, we found a significant time reduction on our dataset.

7.3.2 Increasing loss

In the experiments for RQ1, we observed that we were unable to generate parsable code with com-
pression. We expected that, with compression, too much information is captured in a single token.
This could make predicting code harder, as every token has too much meaning. We also noticed that
during training the loss increases on the validation set. This increase means that the neural network
failed to learn patterns. These issues contradict the research done by Ling et al. [LGH' 16]. However,
we were unable to generate test code without compression. Ling et al. [LGH™16] managed to gener-
ate working code without applying compression. Therefore, it could be that compression only works
when the neural network can capture the problem. The problem why we cannot generate working
code could be caused by our dataset, because the dataset may exist out of barely related training
examples. Compression could make them even more unrelated, what could have a negative impact.
When the training set would have contained training examples that are very related, then reducing
this could give only a small penalty. The positive impact of compression (reducing sequence length)
could be greater than the penalty of making the training examples more unrelated.

7.4 Limitations

The scope of this project is to find out if neural networks can be used for unit test generation. We
still left many questions and problems unanswered, of which some are listed in this chapter.
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7.4.1 The used mutation testing tool

To calculate the mutation score of our baseline, we used an alternative version of PIT Mutation
Testing to calculate the mutation testing score. During our study, this tool achieved the most reliable
result to measure test suite effectiveness. However, new versions of the original tool were released and
could outperform this version. The mutation generation ability of the original tool should be checked
in future research and used when it performs better. Our research is not invalid when the original
tool performs better, because we did not perform comparisons on the baseline yet. Even if we did, it
would not have made a difference. The result should only be more accurate when comparing to real
faults.

7.4.2 JUnit version

During the start of the project, Junit 4 was the latest version of this test framework. However, during
the project Junit 5 was released [Junc]. We did not restart our gathering process, because a recently
released version will be used by fewer projects than a version which has been around for 12 years

[Junb].

7.4.3 More links for AST analysis depends on data

We noticed that for our research AST analysis could create more links than bytecode analysis, because
it supports more projects. We did not perform a statistical check to validate this, because it was not
of importance whether one method was better compared to another. More in-depth research should
be performed when these techniques are compared in future research.

7.4.4 False positive links

In section 6.1.3, we mentioned the number of links we could create on a set of projects. However, it
is possible that for some tests an incorrect class under test is used. This could have resulted in false
positive matches. Many of them could be eliminated with backward slicing, as described in section
3.2.1. We expect that most false positives are eliminated when we link based on the statements
returned by this method.

7.5 The dataset has an impact on the test generators quality

In our research, we only considered a selection of open-source projects. The result could be different
when other open or closed-source projects were used.

7.5.1 Generation calls to non-existing methods

The unit tests in our training examples use helper functions developed for the tests, while we do
not include these in the training data. Thus, our generated tests will contain calls to non-existing
methods. We limited our research by not looking into this problem. Support for these cases has to
be addressed in further research.

7.5.2 Testing a complete method

In an average software project, multiple unit tests exist for a single method. Every unit test is written
for a small part of the method code. We did not embed this relation in our dataset. Therefore,
our machine learning model has to learn this relation on its own. It has to learn from the training
data that some parts of the method translate to a single unit test. In future research, a more direct
translation should be performed because it makes learning easier. It will be easier since this will limit
the sequence length and will relieve the machine learning algorithm from unnecessary complexity.
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7.5.3 The machine learning model is unaware of implementations

During training, the machine learning model learns the usage of many methods. When the model
is applied for making predictions on unseen data, it will see new method calls which it has not
encountered before. The model could know what the call does based on its naming and context.
However, it would be easier for the machine learning algorithm to have more detailed information
such as the implementation of the method. Thus, the information in our training examples is limited.
Adding more detail could make predictions easier.

7.5.4 Too less data for statistical proving our models

In most of our statistical analysis, we used five samples per group. In future research, the sample size
should be increased to validate our findings.

7.5.5 Replacing manual testing

A potential risk is introduced when our method is replacing humans for writing tests. Our generator
could be unable to cover all mutants that would have been captured by a human. This will result in
less test suites effectiveness.

47



Chapter 8

Related work

In our research, we translate source code (method body) to source code (unit test). We are unaware of
research that does a similar translation. However, in research, many projects apply machine learning
to translate from or to source code. An overview of recent projects can be found in Table 8.1. The
difference between these projects and our work is that they do not perform a translation to test code.
The work of Devlin et al. [DUSK17] is closely related because they address the issue of finding software
faults. However, compared to our work, they developed a static analysis tool instead of a test suite
generator. They try to find locations in the code that could have bugs while we generate code that
tests if the behavior of a piece of code is still the same then when the test was written.

Table 8.1: Machine learning projects that translate to or from code

Researcher

Project

Description

Beltramelli et al. [Bell7]

Pix2code: Generating
Code from a Graphical
User Interface Screenshot

Used machine learning to translate a mock-up
(image) into HTML. Instead of directly trans-
lating into HTML, they targeted a domain-
specific language (DSL) with a limited vocab-
ulary to reduce the complexity

Ling et al. [LGH " 16]

Latent Predictor Net-
works for Code Genera-
tion

Translates game cards into code. For this,
they developed a custom machine learning al-
gorithm to make predictions on tokens that
are not very common in the training data

Parr et al. [PV16]

Towards a Universal Code
Formatter through Ma-
chine Learning

Developed a universal code formatter that
learns the code style from a code base

Karaivanov et al. [KRV14]

Phrase-based  statistical
translation of program-
ming languages

Used phrase tables to translate one program-
ming language into another

Devlin et al. [DUSK17]

Semantic Code Repair
using Neuro-Symbolic
Transformation Networks

Developed a solution that repairs syntactic er-
rors and semantic bugs in a code base

Zheng et al. [ZZLW17]

Translating Code to Com-
ments by Exploiting Do-
main Features

Translates source code to comments

Yin et al. [YN17]

A Syntactic Neural Model
for General-Purpose Code
Generation

Developed an algorithm that translates natu-
ral language into source code

Hu et al. [HWLJ18]

Deep Code Comment

Generation

Developed an algorithm that translates code
into a natural language
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Chapter 9

Conclusion

Incorporating machine learning in a test generator could lead to better test generation. A generator
like this cannot only be used to generate a complete test suite; it can also be used to aid software
engineers in writing tests. Nevertheless, more work has to be done to get to this point.

To our knowledge, this research is the first study towards test generation with the application of
machine learning. We were able to create a training set for this problem, and managed to train
neural networks with this dataset. We extracted more than 52,000 training examples from 1,106
software projects. When training machine learning models, we noticed that the quality of our models
improved when configurations are tweaked and when the training data was filtered. Our first results
are promising, and we see many opportunities to continue the development of the test generator. We
believe that our results could be further improved when a machine learning algorithm specific for code
translation is used, if the neural network is trained on how small parts of the code are tested instead
of whole methods, and when the neural network has more detailed implementation information. Our
results can be used as a baseline for future research.

We also experimented with machine learning approaches that improved the results of other studies.
We applied compression, SBT, and BPE on our training set. A correlation was found that indicates
that the time needed to train a model is reduced when compression is applied. An improved com-
pression algorithm or a dataset optimized for the compression technique could be used to create a
model that can make good predictions in less time, what will make research in this field more efficient.
We also improved the application of SBT in translations to code. We developed an algorithm that
can translate an SBT representation back to code (Appendix A). This tool could already be used for
experiments when the output length is limited. BPE was also applied, to let our model use additional
information on how parts of the training data are connected. In our experiment, it did not have a
positive effect. However, optimizing the number of connections could work for our datasets when only
connections that add relevant information are included.

All steps from finding suitable GitHub projects until the calculation of the parsable score are
automated in scripts. A copy can be found in Appendix A. With these scripts, all results of our
experiments can be reproduced. The first part of the scripts can be executed to retrieve training
examples or the provided backups with the used training examples can be restored. When it is
preferred to download all projects, then the overview of all used repositories should be used. We
included the used commits in the GitHub links. The second part is to configure the dataset generator
according to the parameters in our experiments. From this point, the rest of the scripts can be used
to execute the rest of the pipeline in order to calculate the parsable score.

To summarize, with this research we contribute an algorithm that can be used to generate training
examples (for method to test translations), the training sets used in our experiments, SBT to code
implementation, and a neural network configuration that can learn basic patterns between methods
and test code. Finally, we also contribute software that takes GitHub repositories as input and a
model that can be used to predict tests with machine learning as output.
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Chapter 10

Future work

There are still some additional experiments which could add value to the presented work. We did not
manage to do experiments with SBT, and we did not investigate further if the percentage of common
subsequences has an impact on the results of the neural network. Additionally, we found some areas
that are promising for a machine learning based test generator that we did not address.

10.1 SBT and BPE

Both BPE and SBT did not positively affect our results. We could not generate valid trees with
SBT because of hardware/software limitations. The concept of SBT is very promising and should be
addressed in future research. BPE was also applied on our training data. In future research, it should
be tested if optimizing the number of connections improves results by only introducing a connection
that adds relevant information.

10.2 Common subsequences

We performed experiments where we filtered training examples based on the level of common subse-
quences. We only kept training examples where more than 80% of the training example are common
under other training examples. An optimized percentage could result in better predictions. In future
research, the rate of common subsequences could be tuned to find out what the effect of varying the
percentage is.

10.2.1 Filtering code complexity with other algorithms

During our research, we filtered complex training examples (Section 6.2.2). We only checked if concrete
classes and default methods were used. However, more criteria could be tested. For instance, training
examples that have a too high cyclomatic complexity could be excluded.

10.3 Promising areas

Apart from future work, there are many areas that we did not address in our research while they
have the potential to improve our results. The time needed to train models could be reduced to
allow future research to train more models in the same amount of time and have a shorter feedback
loop. Additionally, an optimized machine learning algorithm could be developed for code-to-code
conversion.

10.3.1 Reducing the time required to train models

To find out if a change in the machine learning configuration had a positive or negative impact on our
results, we had to wait for 12-24 hours. This time could be reduced when a mechanism is incorporated
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that can eliminate predictions when they are only partially processed. Predictions could be eliminated
when they are not compliant with the language’s grammar. This could have a positive impact since
models are applied to the validation set during training.

10.3.2 Optimized machine learning algorithm

To our knowledge, there are no machine learning algorithms that target code-to-code translations. An
algorithm could be developed that is specialized in these code-to-code problems. This algorithm could
be used by the unit test generator, while it could also be used for other general translation problems.
The algorithm target the challenges that we encountered during our research. For example, the
difficulty to make predictions over a long sequence length, and the difficulty to learn code structure.
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Appendix A

Data and developed software

The source-code, training examples, and everything else used to perform our experiments can be
found on GitHub! and Stack?. An overview of the GitHub repository is given in Table A.1, and an
overview of the data on Stack is given in Table A.2.

Table A.1: Overview of the GitHub repository

Folder

Description

Fetch projects

Contains code to crawl and filter Java projects hosted on GitHub

Last version of the Java
linking applications

Includes compiled Java programs used in this research. The source of
these programs can be found in the folder ”Test extraction”. Programs
are included to fill a linking queue based on test reports, filter training
examples, convert code to SBT, convert code to BPE, tokenize code,
precaching to speed up the linking process, token to code converter,
linking programs, SBT to code converter, training data exporter, and a
tool to check if code is parsable

Linux script

Contains scripts that can be used to automate all experiments in the
research. In the subfolder ” Compile and Test” a file pipeline.sh is in-
cluded which can be used to convert GitHub repository links to train-
ing examples. In trainingData.sh the output format can be specified
(SBT/BPE /tokenized)

Machine learning

The script run.sh takes training sets as input and gives a machine learn-
ing model as output. The script predict.sh script can be used to make
predictions with a model

Lhttps://github.com/laurenceSaes/Unit-test-generation-using-machine-learning
2https:/ /lauw.stackstorage.com/s/SdX5310wWLUVEQs
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Table A.2: Overview of the Stack directory

Folder

Description

All files for linking server

This folder contains a zip archive that can be extracted on an Ubuntu
18.04 server. It contains the pipeline.sh script with all its dependencies
in place

Compression loss models

The compression loss experiment data

Experiment S1-S20 ran-
dom number 1234

Models S1 until S20 that are trained with the random value 1234

Extra models for statistics
S1-S20

Models for S1 until S20

Other data

Database backups with all training examples, logs, and a flow diagram
of the research

Predictions best model

Predictions (with input) of the best model

Raw data

All raw data used to generate diagrams in this thesis

SBT folders

All information for the SBT experiments

Seq2Seq server

A pre-configured machine learning server. The folder can be extracted
on an Ubuntu 18.04 server, and the run.sh can be used to train models
and parsableTest.sh to generate a Parsable score

Slicing Early work on a slicing tool that can be used with linking
Suite validation Mutation testing used to test the test suite effectiveness of our baseline
Training Contains training examples

Unit test report generator

From the scripts to download GitHub repositories to scripts to generate
test reports
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