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Who am I?

PlanetScale
● Founded in February 2018
● Venture backed: a16z, SignalFire
● 30 employees mostly in Mountain View, CA

Liz van Dijk - Solution Architect
● Howest University > Percona > PlanetScale
● New to Vitess, MySQL has been my world for 8+ years
● liz@planetscale.com
● @lizztheblizz

mailto:liz@planetscale.com


What is Vitess?

Cloud
Native

Massively 
Scalable

Highly
Available

Based on
MySQL
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Key Adopters

* *

* * *

* Employing active project maintainers



Architecture



VTGate

⬢ VTGate is a stateless proxy, and the entry 
point into the cluster

⬢ Can be connected to and presents the cluster 
as a monolithic database

⬢ Interprets SQL and supports Vitess-specific 
hints

https://vitess.io/docs/concepts/vtgate/

https://vitess.io/docs/concepts/vtgate/


Keyspace & Shards

⬢ Keyspace is an analog to what we call a 
logical database.

⬢ Keyspaces consist of one or multiple 
Shards.

⬢ Shards contain one or more replica 
tablets, of which one will be elected as 
master.

⬢ Adding shards compartmentalizes risk.

https://vitess.io/docs/concepts/keyspace/
https://vitess.io/docs/concepts/shard/

https://vitess.io/docs/concepts/keyspace/
https://vitess.io/docs/concepts/shard/


⬢ Most basic “worker” unit of a Vitess Cluster 
⬢ MySQL Server may be any flavor
⬢ VTTablet is a sidecar process
⬢ Tablets can fulfill multiple roles

⬡ Master
⬡ Replica
⬡ Analytics Replica

Vitess Tablet

https://vitess.io/docs/concepts/tablet/

https://vitess.io/docs/concepts/tablet/


DEMO



Architecture



Migration Plan (Dev/QA)

1.
Test Vitess for Query 

Compatibility

2.
Test Application for 

added Latency

3.
Backout if any issues 

discovered



⬢ Getting started with vtexplain
⬢ If you can, use a normalized query list from Prod

⬡ If not, grab a representative sample using the Slow Query Log with 
long_query_time set to 0

⬡ Use pt-query-digest to extract a normalized list of queries
⬢ Other required ingredients:

⬡ vtexplain - a stand-alone program that utilizes much of the parsing 
and routing logic in Vitess

⬡ schema.sql - your schema design for the Vitess cluster
⬡ vschema.json - the same you would use with an actual cluster, with 

sharding and vindex instructions

Query Compatibility



vtexplain in a nutshell

vschema.json:
{
  "ks1": {
    "sharded": true,
    "tables": {
      "foo": {
        "column_vindexes": [
          {
            "column": "data",
            "name": "hash"
          }
        ]
      },
      "bar": {
        "column_vindexes": [
          {
            "column": "data",
            "name": "hash"
          }
        ]
      }
    },
    "vindexes": {
      "hash": {
        "type": "hash"
      }
    }
  }
}

Schema.sql: (in keyspace ks1)
CREATE TABLE `foo` ( `id` int(11), `data` int(11), PRIMARY KEY (`id`)) ;
CREATE TABLE `bar` ( `id` int(11), `data` int(11), PRIMARY KEY (`id`)) ;

Two simple tables each with a an id column and a data column that we shard on.  
So we have two shards: ks1:-80 and ks1:80-

vtexplain  -schema-file  schema.sql    \
           -vschema-file vschema.json  \
           -shards 2                   \
           -sql 'SELECT foo.id FROM foo JOIN bar 
                 ON  foo.data = bar.data
                 AND foo.data = 7'

output:
-------------------------------------------------------------
SELECT foo.id FROM foo JOIN bar 
      ON foo.data = bar.data
      AND foo.data = 7

1 ks1/80-: select foo.id from foo join bar on foo.data = 
bar.data and foo.data = 7 limit 10001

-------------------------------------------------------------

The above output indicates that the query was sharded, because it is sent only
to ks1:80- , where the value 7 would be hashed according to the vindex clause.
If the query instead said  “AND foo.data < 95” the output would show a scatter 
result, with the query being sent to both shards.



⬢ Detects unsupported SQL syntax
⬢ Reports ambiguous query constructs 
⬢ Validates vSchema by predicting 

sharding behavior of all queries

vtexplain Summarized



vtexplain further example
Initial query:

SELECT   pref_codes.id 
  FROM   pref_codes 
  WHERE  pref_codes.subject_id`  = 9      
  AND    pref_codes.location_id` = 12204 
  AND 

         (reserved_at is null 
AND not exists 
  ( SELECT 'x' FROM reject where reject_code_id = pref_codes.id )

         )  
  ORDER BY pref_codes.id LIMIT 40;

Output:
unsupported: cross-shard correlated subquery (scattered subquery was attempted)

Altered to succeed and produce a sharded query where subject_id is the sharding key
      SELECT  pref_codes.id 
        FROM  pref_codes
        WHERE pref_codes.subject_id  = 9 
        AND   pref_codes.location_id = 12204 
        AND   pref_codes.reserved_at IS NULL
        AND   pref_codes.id NOT IN

( SELECT reject_code_id 
                 FROM   reject
                 WHERE  reject_code_id = pref_codes.id               -- references upper query
                 AND    subject_id     = pref_codes.subject_id       -- references upper query

)
        ORDER BY pref_codes.id LIMIT 40;

Output: ( a sharded query)
1 ks1/-80: select pref_codes.id from pref_codes where pref_codes.subject_id = 9 and pref_codes.location_id = 
12204 and pref_codes.reserved_at is null and pref_codes.id not in (select reject_code_id from reject where 
reject_code_id = pref_codes.id and subject_id = pref_codes.business_id) order by pref_codes.id asc limit 40



DEMO



⬢ Even if everything looks perfect in vtexplain, start by building out 
a Dev/QA environment

⬢ Typical Gotchas
⬡ Some applications have user-generated queries that are hard to predict
⬡ Unexpected performance regressions
⬡ Third party plugins/connectors (CDC, analytics, etc.)

Query Compatibility (2)



⬢ Vitess requires one more network hop than MySQL (VTGate 
Proxy)

⬢ Simple back of napkin math: +1-2ms on each query
⬢ Should be within tolerable threshold for most Apps

⬡ Edge cases are N+1 pattern, typically not well designed apps.

Added Latency



Backout Plan

⬢ We’ve verified in Dev/QA that our App works with Vitess
⬡ No observable errors or problems

⬢ Good ops practice is to use a Canary 
⬡ Migrate just 5% of our traffic to Vitess
⬡ Rollback if any issues
⬡ Works great with Vitess!



Architecture



Canary Deployment: Phase 1
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Phase 1 Completed!
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Phase 2: Add a New Tablet
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Phase 2: Table Migration
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⬢ Based on a feature called vReplication
⬢ Requires your source MySQL Server to have enabled:

⬡ Binary Logging with GTIDs
⬡ Row-based Replication
⬡ Matching Character Set (utf8)

⬢ Copy phase is completely online
⬢ Final cut-over will take a couple of seconds of blocking

Table Migration



Phase 2: Completion
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Phase 2: Completion
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⬢ Legacy MySQL is treated as one unsharded Keyspace
⬡ In Vitess terminology “The tablet server uses an externally managed 

MySQL”
⬢ New Vitess Tablet is a single unsharded Keyspace

⬡ We could have just as easily migrated to a sharded keyspace
⬢ We can still join queries between tablets in each keyspace
⬢ It is recommended to keep updates contained within a single 

keyspace

Our Setup



⬢ Great way to become familiar with Vitess!
⬢ https://vitess.io/docs/user-guides/

Vitess User Guides

https://vitess.io/docs/user-guides/


Vitess Website: vitess.io

Vitess Documentation: vitess.io/docs

Slack Community: vitess.io/slack

Questions?

https://vitess.io/
https://vitess.io/docs
https://vitess.io/slack

