
How to migrate a MySQL
Database to Vitess

Liz van Dijk - @lizztheblizz

Who am I?

PlanetScale
● Founded in February 2018
● Venture backed: a16z, SignalFire
● 30 employees mostly in Mountain View, CA

Liz van Dijk - Solution Architect
● Howest University > Percona > PlanetScale
● New to Vitess, MySQL has been my world for 8+ years
● liz@planetscale.com
● @lizztheblizz

mailto:liz@planetscale.com

What is Vitess?

Cloud
Native

Massively
Scalable

Highly
Available

Based on
MySQL

Started

2010

1100
Slack Members

18,000
Commits

1200
Forks

9,500
Stars

200
Contributors

v5.0
(4 Feb 2020)

Vitess Stats

CNCF
Graduated

Key Adopters

* *

* * *

* Employing active project maintainers

Architecture

VTGate

⬢ VTGate is a stateless proxy, and the entry
point into the cluster

⬢ Can be connected to and presents the cluster
as a monolithic database

⬢ Interprets SQL and supports Vitess-specific
hints

https://vitess.io/docs/concepts/vtgate/

https://vitess.io/docs/concepts/vtgate/

Keyspace & Shards

⬢ Keyspace is an analog to what we call a
logical database.

⬢ Keyspaces consist of one or multiple
Shards.

⬢ Shards contain one or more replica
tablets, of which one will be elected as
master.

⬢ Adding shards compartmentalizes risk.

https://vitess.io/docs/concepts/keyspace/
https://vitess.io/docs/concepts/shard/

https://vitess.io/docs/concepts/keyspace/
https://vitess.io/docs/concepts/shard/

⬢ Most basic “worker” unit of a Vitess Cluster
⬢ MySQL Server may be any flavor
⬢ VTTablet is a sidecar process
⬢ Tablets can fulfill multiple roles

⬡ Master
⬡ Replica
⬡ Analytics Replica

Vitess Tablet

https://vitess.io/docs/concepts/tablet/

https://vitess.io/docs/concepts/tablet/

DEMO

Architecture

Migration Plan (Dev/QA)

1.
Test Vitess for Query

Compatibility

2.
Test Application for

added Latency

3.
Backout if any issues

discovered

⬢ Getting started with vtexplain
⬢ If you can, use a normalized query list from Prod

⬡ If not, grab a representative sample using the Slow Query Log with
long_query_time set to 0

⬡ Use pt-query-digest to extract a normalized list of queries
⬢ Other required ingredients:

⬡ vtexplain - a stand-alone program that utilizes much of the parsing
and routing logic in Vitess

⬡ schema.sql - your schema design for the Vitess cluster
⬡ vschema.json - the same you would use with an actual cluster, with

sharding and vindex instructions

Query Compatibility

vtexplain in a nutshell

vschema.json:
{
 "ks1": {
 "sharded": true,
 "tables": {
 "foo": {
 "column_vindexes": [
 {
 "column": "data",
 "name": "hash"
 }
]
 },
 "bar": {
 "column_vindexes": [
 {
 "column": "data",
 "name": "hash"
 }
]
 }
 },
 "vindexes": {
 "hash": {
 "type": "hash"
 }
 }
 }
}

Schema.sql: (in keyspace ks1)
CREATE TABLE `foo` (`id` int(11), `data` int(11), PRIMARY KEY (`id`)) ;
CREATE TABLE `bar` (`id` int(11), `data` int(11), PRIMARY KEY (`id`)) ;

Two simple tables each with a an id column and a data column that we shard on.
So we have two shards: ks1:-80 and ks1:80-

vtexplain -schema-file schema.sql \
 -vschema-file vschema.json \
 -shards 2 \
 -sql 'SELECT foo.id FROM foo JOIN bar
 ON foo.data = bar.data
 AND foo.data = 7'

output:

SELECT foo.id FROM foo JOIN bar
 ON foo.data = bar.data
 AND foo.data = 7

1 ks1/80-: select foo.id from foo join bar on foo.data =
bar.data and foo.data = 7 limit 10001

The above output indicates that the query was sharded, because it is sent only
to ks1:80- , where the value 7 would be hashed according to the vindex clause.
If the query instead said “AND foo.data < 95” the output would show a scatter
result, with the query being sent to both shards.

⬢ Detects unsupported SQL syntax
⬢ Reports ambiguous query constructs
⬢ Validates vSchema by predicting

sharding behavior of all queries

vtexplain Summarized

vtexplain further example
Initial query:

SELECT pref_codes.id
 FROM pref_codes
 WHERE pref_codes.subject_id` = 9
 AND pref_codes.location_id` = 12204
 AND

 (reserved_at is null
AND not exists
 (SELECT 'x' FROM reject where reject_code_id = pref_codes.id)

)
 ORDER BY pref_codes.id LIMIT 40;

Output:
unsupported: cross-shard correlated subquery (scattered subquery was attempted)

Altered to succeed and produce a sharded query where subject_id is the sharding key
 SELECT pref_codes.id
 FROM pref_codes
 WHERE pref_codes.subject_id = 9
 AND pref_codes.location_id = 12204
 AND pref_codes.reserved_at IS NULL
 AND pref_codes.id NOT IN

(SELECT reject_code_id
 FROM reject
 WHERE reject_code_id = pref_codes.id -- references upper query
 AND subject_id = pref_codes.subject_id -- references upper query

)
 ORDER BY pref_codes.id LIMIT 40;

Output: (a sharded query)
1 ks1/-80: select pref_codes.id from pref_codes where pref_codes.subject_id = 9 and pref_codes.location_id =
12204 and pref_codes.reserved_at is null and pref_codes.id not in (select reject_code_id from reject where
reject_code_id = pref_codes.id and subject_id = pref_codes.business_id) order by pref_codes.id asc limit 40

DEMO

⬢ Even if everything looks perfect in vtexplain, start by building out
a Dev/QA environment

⬢ Typical Gotchas
⬡ Some applications have user-generated queries that are hard to predict
⬡ Unexpected performance regressions
⬡ Third party plugins/connectors (CDC, analytics, etc.)

Query Compatibility (2)

⬢ Vitess requires one more network hop than MySQL (VTGate
Proxy)

⬢ Simple back of napkin math: +1-2ms on each query
⬢ Should be within tolerable threshold for most Apps

⬡ Edge cases are N+1 pattern, typically not well designed apps.

Added Latency

Backout Plan

⬢ We’ve verified in Dev/QA that our App works with Vitess
⬡ No observable errors or problems

⬢ Good ops practice is to use a Canary
⬡ Migrate just 5% of our traffic to Vitess
⬡ Rollback if any issues
⬡ Works great with Vitess!

Architecture

Canary Deployment: Phase 1

app server

app server

app server

vtgate

DATABASE

topology

vtctld

APP

Existing MySQL
Server

vttablet

95%

5%

Phase 1 Completed!

app server

app server

app server

vtgate

DATABASEAPP

Existing MySQL
Server

vttablet

100%

0%

topology

vtctld

Phase 2: Add a New Tablet

app server

app server

app server

vtgate

DATABASEAPP

Existing MySQL
Server

vttablet

100%

mysqld

vttablet

mysqld

vttablet

replicas
topology

vtctld

Phase 2: Table Migration

app server

app server

app server

vtgate

DATABASEAPP

Existing MySQL
Server

vttablet

100%

mysqld

vttablet

mysqld

vttablet

replicas

Copy...

topology

vtctld

⬢ Based on a feature called vReplication
⬢ Requires your source MySQL Server to have enabled:

⬡ Binary Logging with GTIDs
⬡ Row-based Replication
⬡ Matching Character Set (utf8)

⬢ Copy phase is completely online
⬢ Final cut-over will take a couple of seconds of blocking

Table Migration

Phase 2: Completion

app server

app server

app server

vtgate

DATABASEAPP

Existing MySQL
Server

vttablet

100%

mysqld

vttablet

mysqld

vttablet

replicas

Copy...

topology

vtctld

Phase 2: Completion

app server

app server

app server

vtgate

DATABASEAPP

Existing MySQL
Server

vttablet

100%

mysqld

vttablet

mysqld

vttablet

replicas

topology

vtctld

Phase 2: Completion

app server

app server

app server

vtgate

DATABASEAPP

Existing MySQL
Server

vttablet

100%

mysqld

vttablet

mysqld

vttablet

replicas

Most tables

Migrated
tables, any
new
developments

topology

vtctld

⬢ Legacy MySQL is treated as one unsharded Keyspace
⬡ In Vitess terminology “The tablet server uses an externally managed

MySQL”
⬢ New Vitess Tablet is a single unsharded Keyspace

⬡ We could have just as easily migrated to a sharded keyspace
⬢ We can still join queries between tablets in each keyspace
⬢ It is recommended to keep updates contained within a single

keyspace

Our Setup

⬢ Great way to become familiar with Vitess!
⬢ https://vitess.io/docs/user-guides/

Vitess User Guides

https://vitess.io/docs/user-guides/

Vitess Website: vitess.io

Vitess Documentation: vitess.io/docs

Slack Community: vitess.io/slack

Questions?

https://vitess.io/
https://vitess.io/docs
https://vitess.io/slack

