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ABSTRACT
This text discusses several popular explanatory methods that go
beyond the error measurements and plots traditionally used to as-
sess machine learning models. Some of the explanatory methods
are accepted tools of the trade while others are rigorously derived
and backed by long-standing theory. The methods, decision tree
surrogate models, individual conditional expectation (ICE) plots,
local interpretable model-agnostic explanations (LIME), partial de-
pendence plots, and Shapley explanations, vary in terms of scope,
fidelity, and suitable application domain. Along with descriptions
of these methods, this text presents real-world usage recommenda-
tions supported by a use case and public, in-depth software exam-
ples for reproducibility.
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1 INTRODUCTION
The subject of interpretable machine learning is both multifaceted
and evolving. Others have previously defined key terms, put for-
ward general motivations for the broader goal of better interpretabil-
ity, and advocated for stronger scientific rigor for the burgeoning
field [6], [9], [11], [15], [23]. Following Doshi-Velez and Kim, this
discussion uses “the ability to explain or to present in understand-
able terms to a human,” as the definition of interpretable. “When you
can no longer keep asking why,” will serve as the working defini-
tion for a good explanation of model mechanisms or predictions [9].
These two thoughtful characterizations appear to link explanations
and interpretability, and the presented methods help practitioners
explain interpretable models and other types of popular supervised
machine learning models. Specifically, the discussed techniques
facilitate:

• Human learning from machine learning.
• Human appeal of automated model decisions.
• Regulatory compliance.
• White-hat hacking and forensic analysis.

Model explanations and the documentation they enable are also
an important, mandatory, or embedded aspect of commercial pre-
dictive modeling in industries like financial services.1 However,
some have criticized the sub-discipline of explanatory methods
1In the U.S., explanations and model documentation may be required under the Civil
Rights Acts of 1964 and 1991, the Americans with Disabilities Act, the Genetic Infor-
mation Nondiscrimination Act, the Health Insurance Portability and Accountability
Act, the Equal Credit Opportunity Act, the Fair Credit Reporting Act, the Fair Housing
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like those described herein, and like many technologies, machine
learning explanations can be misused, particularly as faulty safe-
guards for harmful black-boxes and for malevolent purposes like
hacking and “fairwashing” [1], [2], [20]. This text does not condone
such practices. It instead promotes informed, nuanced discussion
and puts forward best practices to accompany the numerous and
already-in-service open source and commercial software packages
that have implemented explanatory techniques.2 As highlighted in
Figure 1, explanations can, and likely should, be used along with in-
terpretable models, model debugging, disparate impact assessments
or bias remediation to further enhance understanding and trust in
high-stakes, life- or mission-critical machine learning workflows.

The primary discussion of this text will focus on a pedagogical
example scenario that enables detailed description and technical
recommendations for the explanatory techniques. A use case will
then highlight combining explanations with a constrained, inter-
pretable variant of a gradient boosting machine (GBM). Discussions
of the explanatory methods begin below by defining notation. Then

Act, Federal Reserve SR 11-7, and the European Union (EU) General Data Protection
Regulation (GDPR) Article 22 [24].
2For a list of open source debugging, explanatory, fairness, and inter-
pretable modeling packages, please see: https://github.com/jphall663/
awesome-machine-learning-interpretability. At this date, commercial imple-
mentations include atleast: DataRobot, H2O Driverless AI, SAS Visual Data Mining
and Machine Learning, and Zest AutoML.

Figure 1: A proposed human-centeredworkflow inwhich ex-
planations, andmany other techniques, are used to decrease
disparate impact and increase interpretability and trust for
automated machine learning decision-support systems.
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Sections 3 – 6 outline explanatory methods and present usage rec-
ommendations. Section 7 presents some general interpretability
recommendations for practitioners. Section 8 applies some of the
techniques and recommendations to the well-known UCI credit
card dataset [14]. Finally, Section A highlights software resources
that accompany this text.

2 NOTATION
To facilitate descriptions of explanatory techniques, notation for
input and output spaces, datasets, and models is defined.

2.1 Spaces
• Input features come from the setX contained in a P-dimensional
input space, X ⊂ RP . An arbitrary, potentially unobserved,
or future instance of X is denoted x, x ∈ X.

• Labels corresponding to instances of X come from the set
Y.

• Learned output responses come from the set Ŷ.

2.2 Datasets
• The input dataset X is composed of observed instances of
the set X with a corresponding dataset of labels Y, observed
instances of the set Y.

• Each i-th observation of X is denoted as
x(i) = [x (i)0 ,x

(i)
1 , . . . ,x

(i)
P−1], with corresponding i-th labels in

Y, y(i), and corresponding predictions in Ŷ, ŷ(i).
• X and Y consist of N tuples of observations:
[(x(0), y(0)), (x(1), y(1)), . . . , (x(N−1), y(N−1))].

• Each j-th input column vector of X is denoted as X j =

[x (0)j ,x
(1)
j , . . . ,x

(N−1)
j ]T .

2.3 Models
• A type of machine learning model д, selected from a hy-
pothesis setH , is trained to represent an unknown signal-
generating function f observed as X with labels Y using a

training algorithm A: X,Y
A−−→ д, such that д ≈ f .

• д generates learned output responses on the input dataset
д(X) = Ŷ, and on the general input space д(X) = Ŷ.

• The model to be explained is denoted as д.

3 SURROGATE DECISION TREES
The phrase surrogate model is used here to refer to a simple model
h of a complex model д. This type of model is referred to by various
other names, such as proxy or shadow models and the process
of training surrogate models is sometimes referred to as model
extraction [3], [5], [24].

3.1 Description
Given a learned function д, a set of learned output responses д(X) =
Ŷ, and a tree splitting and pruning approach A, a global – or over
all X – surrogate decision tree htree can be extracted such that
htree(X) ≈ д(X):

X,д(X) A−−→ htree (1)

Figure 2: Globally consistent Shapley summary plot for
known signal-generating function f (X) ∼ Xnum1 ∗ Xnum4 +
|Xnum8 | ∗ X 2

num9 + e and for learned GBM response function
дGBM in a validation dataset.

Decision trees can be represented as directed graphs where the
relative positions of input features can provide insight into their
importance and interactions [4]. This makes decision trees useful
surrogate models. Input features that appear high and often in
the directed graph representation of htree are assumed to have
high importance in д. Input features directly above or below one-
another in htree are assumed to have potential interactions in д.
These relative relationships between input features in htree can be
used to verify and analyze the feature importance, interactions, and
predictions of д.

Figures 2 and 3 use simulated data to empirically demonstrate
the desired relationships between input feature importance and
interactions in the input space X, a GBM binary classifier to be ex-
plained дGBM(X), and a decision tree surrogate htree(X). Data with
a known signal-generating function depending on four numeric
input features with interactions and with eight noise features is
simulated such that:

f (X) =
{

1 if Xnum1 ∗ Xnum4 + |Xnum8 | ∗ X 2
num9 + e ≥ 0.42

0 if Xnum1 ∗ Xnum4 + |Xnum8 | ∗ X 2
num9 + e < 0.42

(2)
where e signifies the injection of random noise in the form of label
switching for roughly 15% of the training and validation observa-
tions.

дGBM is then trained: X, f(X) A−−→ дGBM, such that дGBM ≈ f ,

and htree is extracted by: X,дGBM(X) A−−→ htree, such that
htree(X) ≈ дGBM(X) ≈ f (X).

Figure 2 displays the local Shapley contribution values, which
accurately measure a feature’s impact on each дGBM(x) prediction,
for observations in the validation data. Analyzing local Shapley val-
ues can be a more holistic and consistent feature importance metric
than traditional single-value quantities [17]. Features are ordered
from top to bottom by their mean absolute Shapley value across
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observations in Figure 2, and as expected,Xnum9 andXnum8 tend to
make the largest contributions to дGBM(X) followed by Xnum4 and
Xnum1. Also as expected, noise features make minimal contribu-
tions to дGBM(X). Expected values are calculated by training дGBM
with no validation set on f with no error term and are available in
materials listed in Section A. Shapley values are discussed in detail
in Section 6.

Figure 3 is a directed graph representation of htree that promi-
nently displays the importance of input features Xnum9 and Xnum8
along with Xnum4 and Xnum1. Figure 3 also highlights the potential
interactions between these inputs. URLs to the data and software
used to generate Figures 2 and 3 are available in Section A.

Figure 3: htree for previously defined known signal-
generating function f and learned GBM response function
дGBM in a validation dataset. An image of the entire htree di-
rected graph is available in the supplementary materials de-
scribed in Section A.

3.2 Recommendations
• A shallow-depth htree displays a global, low-fidelity (i.e. ap-
proximate), high-interpretability flow chart of important
features and interactions in д. Because there are few theoret-
ical guarantees that htree truly represents д, always use error
measures to assess the trustworthiness of htree, e.g. RMSE,
MAPE, R2.

• Prescribed methods for training htree do exist [3], [5]. In
practice, straightforward cross-validation approaches are of-
ten sufficient. Moreover, comparing cross-validated training
error to traditional training error can give an indication of
the stability of the single decision tree htree.

• Hu et al. use local linear surrogate models, hGLM, in htree
leaf nodes to increase overall surrogate model fidelity while
also retaining a high degree of interpretability [13].

4 PARTIAL DEPENDENCE AND INDIVIDUAL
CONDITIONAL EXPECTATION (ICE) PLOTS

Partial dependence (PD) plots are a widely-used method for de-
scribing the average predictions of a complex model д across some

partition of data X for some interesting input feature X j [8]. In-
dividual conditional expectation (ICE) plots are a newer method
that describes the local behavior of д for a single instance x ∈ X.
Partial dependence and ICE can be combined in the same plot to
compensate for known weaknesses of partial dependence, to iden-
tify interactions modeled by д, and to create a holistic portrait of
the predictions of a complex model for some X j [10].

4.1 Description
Following Friedman et al. a single feature X j ∈ X and its comple-
ment set X(−j) ∈ X (whereX j ∪X(−j) = X) is considered. PD(X j ,д)
for a given feature X j is estimated as the average output of the
learned function д(X) when all the observations of X j are set to
a constant x ∈ X and X(−j) is left unchanged. ICE(x j , x,д) for a
given instance x and feature x j is estimated as the output of д(x)
when x j is set to a constant x ∈ X and all other features x ∈ X(−j)
are left untouched. Partial dependence and ICE curves are usually
plotted over some set of constants x ∈ X.

Figure 4: Partial dependence and ICE curves for previously
defined known signal-generating function f , learned GBM
response function дGBM, and important input featureXnum9
in a validation dataset.

As in Section 3, simulated data is used to highlight desirable char-
acteristics of partial dependence and ICE plots. In Figure 4 partial
dependence and ICE at the minimum, maximum, and each decile
of дGBM(X) are plotted. The known quadratic behavior of Xnum9
is plainly visible, except for high value predictions, the 80th per-
centiles of дGBM(X) and above and for ∼ −1 < Xnum9 <∼ 1. When
partial dependence and ICE curves diverge, this often points to an
interaction that is being averaged out of the partial dependence.
Given the form of Equation 2, there is a known interaction between
Xnum9 and Xnum8. Combining the information from partial depen-
dence and ICE plots with htr ee can help elucidate more detailed
information about modeled interactions in д. For the simulated
example, htr ee confirms an interaction between Xnum9 and Xnum8
and shows additional modeled interactions between Xnum9, Xnum4,
and Xnum1 for ∼ −0.92 ≤ Xnum9 <∼ 1.04. URLs to the data and
software used to generate Figure 4 are available in Section A.

4.2 Recommendations
• Combining htree with partial dependence and ICE curves is
a convenient method for detecting, confirming, and under-
standing important interactions in д.
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• As monotonicity is often a desired trait for interpretable
models, partial dependence and ICE plots can be used to ver-
ify the monotonicity of д on average and across percentiles
of д(X) w.r.t. some input feature X j .

• Partial dependence can be misleading in the presence of
strong correlation or interactions. Plotting partial depen-
dence with ICE provides a direct visual indication as to
whether the displayed partial dependence is credibly repre-
sentative of individual predictions [10].

• Comparing partial dependence and ICE plots with a his-
togram for the X j of interest can give a basic qualitative
measure of epistemic uncertainty by enabling visual discov-
ery of д(x) values that are based on only small amounts of
training data.

5 LOCAL INTERPRETABLE
MODEL-AGNOSTIC EXPLANATIONS (LIME)

Global and local scope are key concepts in explaining machine
learning models and predictions. Section 3 presents decision trees
as a global – or over all X – surrogate model. As learned response
functions, д, can be complex, simple global surrogate models can
sometimes be too approximate to be trustworthy. LIME attempts to
create more representative explanations by fitting a local surrogate
model, h, in the local region of some observation of interest x ∈ X.
Both h and local regions can be defined to suit the needs of users.

5.1 Description
Ribeiro et al. specifies LIME for some observation x ∈ X as:

argmin
h∈H

L(д,h,πX) + Ω(h) (3)

where h is an interpretable surrogate model of д, often a linear
model hGLM , πX is a weighting function over the domain of д, and
Ω(h) limits the complexity of h [19]. Following Ribeiro et al. hGLM
is often trained by:

X′,д(X′) ALASSO−−−−−−→ hGLM (4)

where X′ is sampled from X, πX weighs X′ samples by their Eu-
clidean similarity to x to enforce locality, local feature contributions
are estimated as the product of hGLM coefficients and their associ-
ated data values βjx j , and Ω(h) is defined as a LASSO, or L1, penalty
on hGLM coefficients inducing sparsity in hGLM .

Figure 5 displays estimated local feature contribution values for
the same дGBM and simulated X with known signal-generating
function f used in previous sections. To increase the nonlinear
capacity of the three hGLM models, information from the Shapley
summary plot in Figure 2 is used to select inputs to discretize
before training each hGLM :Xnum1,Xnum4,Xnum8 andXnum9. Table
1 contains prediction and fit information for дGBM and hGLM. This
is critical information for analyzing LIMEs.

Table 1 shows that LIME is not necessarily locally accurate,
meaning that the predictions of hGLM (x) are not always equal to
the prediction of дGBM(x). Moreover, the three hGLM models do
not necessarily explain all of the variance of дGBM predictions in
the local regions around the three x(i) of interest. hGLM intercepts

Table 1: дGBM and hGLM predictions and hGLM intercepts
and R2 for the hGLM models trained to explain дGBM(x(i)) at
the 10th, median, and 90th percentiles of previously defined
дGBM(X) and known signal-generating function f in a vali-
dation dataset.

дGBM(X)
Percentile

дGBM(x(i))
Prediction

hGLM (x(i))
Prediction

hGLM
Intercept

hGLM
R2

10th 0.16 0.13 0.53 0.72
Median 0.30 0.47 0.70 0.57
90th 0.82 0.86 0.76 0.40

are also displayed because local feature contribution values, βjx
(i)
j ,

are offsets from the local hGLM intercepts.
An immediately noticeable characteristic of the estimated local

contributions in Figure 5 is their sparsity. LASSO input feature selec-
tion drives some hGLM βj coefficients to zero so that some βjx

(i)
j

local feature contributions are also zero. For the 10th percentile
дGBM(X) prediction, the local hGLM R2 is adequate and the LIME
values appear parsimonious with reasonable expectations. The
contributions from discretized xnum1,xnum4,xnum8 and xnum9 out-
weigh all other noise feature contributions and thexnum1,xnum4,xnum8
and xnum9 contributions are all negative as expected for the rela-
tively low value of дGBM(x).

For the median prediction of дGBM(X), it could be expected that
some estimated contributions for xnum1,xnum4,xnum8 and xnum9
should be positive and others should be negative. However, all local
feature contributions are negative due to the relatively high value
of the hGLM intercept at the median percentile of дGBM(X). Because
the hGLM intercept is quite large compared to the дGBM(x(i)) predic-
tion, it is not alarming that all the xnum1,xnum4,xnum8 and xnum9
contributions are negative offsets w.r.t. the local hGLM intercept
value. For the median дGBM(X) prediction, hGLM also estimates
that the noise feature xnum2 has a fairly large contribution and
the local hGLM R2 is probably less than adequate to generate fully
trustworthy explanations.

For the 90th percentile of дGBM(X) predictions, the local contri-
butions for xnum1,xnum4,xnum8 and xnum9 are positive as expected
for the relatively high value of дGBM(x(i)), but the local hGLM R2
is somewhat poor and the noise feature xnum2 has the highest lo-
cal feature contribution. This large attribution to the noise feature
xnum2 could stem from problems in the LIME procedure or in the
fit of дGBM to f . Further investigation, or model debugging, is con-
ducted in Section 6.

Generally the LIMEs in Section 5 would be considered to be
sparse or high-interpretability but also low-fidelity explanations.
This is not always the case with LIME and the fit of some hGLM
to a local region around some д(x) will vary in accuracy. URLs to
the data and software used to generate Table 1 and Figure 5 are
available in Section A.

5.2 Recommendations
• Always use fit measures to assess the trustworthiness of
LIMEs, e.g. RMSE, MAPE, R2.
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Figure 5: Sparse, low-fidelity local feature contributions found using LIME at three percentiles of дGBM(X) for known signal-
generating function f (X) ∼ Xnum1 ∗ Xnum4 + |Xnum8 | ∗ X 2

num9 + e in a validation dataset.

• Local feature contribution values are often offsets from a
local hGLM intercept. Note that this intercept can sometimes
account for the most important local phenomena. Each LIME
feature contribution can be interpreted as the difference in
h(x) and some local offset, often β0, associated with some
feature x j .

• Some LIME methods can be difficult to deploy for explaining
predictions in real-time. Consider highly deployable variants
for real-time applications [12], [13].

• Always investigate local hGLM intercept values. Generated
LIME samples can contain large proportions of out-of-domain
data that can lead to unrealistic intercept values.

• To increase the fidelity of LIMEs, try LIME on discretized
input features and on manually constructed interactions. An-
alyze htree to construct potential interaction terms, and use
LIME as further confirmation of modeled htree interactions.

• Use cross-validation to estimate standard deviations or even
confidence intervals for local feature contribution values.

• Poor fit or inaccuracy of local linear models is itself informa-
tive, often indicating extreme nonlinearity or high-degree
interactions. However, explanations from such local linear
models are likely unacceptable and other types of local mod-
els with model-specific explanatory mechanisms, such as
decision trees or neural networks, can be used in these cases
to generate high-fidelity explanationswithin the LIME frame-
work [19], [22].

6 TREE SHAP
Shapley explanations, including tree SHAP (SHapley Additive ex-
Planations) and even certain implementations of LIME, are a class
of additive, locally accurate feature contribution measures with
long-standing theoretical support [17]. Shapley explanations are
the only possible locally accurate and globally consistent feature
contribution values, meaning that Shapley explanation values for
input features always sum to д(x) and that Shapley explanation
values can never decrease for some x j when д is changed such that
x j truly makes a stronger contribution to д(x) [17].

6.1 Description
For some observation x ∈ X, Shapley explanations take the form:

д(x) = ϕ0 +
j=P−1∑
j=0

ϕ jzj (5)

In Equation 5, z ∈ {0, 1}P is a binary representation of x where
0 indicates missingness. Each ϕ j is the local feature contribution
value associated with x j and ϕ0 is the average of д(X).

Shapley values can be estimated in different ways. Tree SHAP
is a specific implementation of Shapley explanations. It does not
rely on surrogate models. Both tree SHAP and a related technique
known as treeinterpreter rely instead on traversing internal tree
structures to estimate the impact of each x j for someд(x) of interest
[16], [21].

ϕ j =
∑

S ⊆P\{j }

|S |!(P − |S | − 1)!
P!

[дx (S ∪ {j}) − дx (S)] (6)

Unlike treeinterpreter and as displayed in Equation 6, tree SHAP
and other Shapley approaches estimateϕ j as the difference between
the model prediction on a subset of features S without x j , дx (S),
and the model prediction with x j and S , дx (S ∪ {j}), summed and
weighed appropriately across all subsets S of P that do not contain
x j , S ⊆ P \ {j}. (Here дx incorporates the mapping between x and
the binary vector z.) Since trained decision tree response functions
model complex dependencies between input features, removing
different subsets of input features helps elucidate the true impact
of removing x j from д(x).

Simulated data is used again to illustrate the utility of tree SHAP.
Shapley explanations are estimated at the 10th, median, and 90th per-
centiles of дGBM(X) for simulated X with known signal-generating
function f . Results are presented in Figure 6. In contrast to the LIME
explanations in Figure 5, the Shapley explanations are complete,
giving a numeric local contribution value for each non-missing
input feature. At the 10th percentile of дGBM(X) predictions, all
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Figure 6: Complete, locally accurate feature contributions found using tree SHAP at three percentiles of дGBM(X) and for
known signal generating function f (X) ∼ Xnum1 ∗ Xnum4 + |Xnum8 | ∗ X 2

num9 + e in a validation dataset.

feature contributions for xnum1,xnum4,xnum8 and xnum9 are nega-
tive as expected for this relatively low value of дGBM(X) and their
contributions obviously outweigh those of the noise features.

For the median prediction of дGBM(X), the Shapley explana-
tions are somewhat aligned with the expectation of a split between
positive and negative contributions. xnum1,xnum4, and xnum9 are
negative and the contribution for xnum8 is positive. Like the LIME
explanations at this percentile in Figure 5, the noise feature xnum2
has a relatively high contribution, higher than that of xnum1, likely
indicating that дGBM is over-emphasizing Xnum2 in the local region
around the median prediction.

As expected at the 90th percentile of дGBM(X) all contributions
from xnum1,xnum4,xnum8 and xnum9 are positive and much larger
than the contributions from noise features. Unlike the LIME expla-
nations at the 90th percentile of дGBM(X) in Figure 5, tree SHAP es-
timates only a small contribution from xnum2. This discrepancy may
reveal a spurious pair-wise linear correlation between Xnum2 and
дGBM(X) in the local region around the 90th percentile of дGBM(X)
that fails to represent the true form of дGBM(X) in this region,
which can be highly nonlinear and incorporate high-degree interac-
tions. Partial dependence and ICE for Xnum2 and two-dimensional
partial dependence between Xnum2 and Xnum1,Xnum4,Xnum8 and
Xnum9 could be used to further investigate the form of дGBM(X)
w.r.t. Xnum2. URLs to the data and software used to generate Figure
6 are available in Section A.

6.2 Recommendations
• Tree SHAP is ideal for estimating high-fidelity, consistent,
and complete explanations of decision tree and decision tree
ensemble models, perhaps even in regulated applications to
generate regulator-mandated reason codes (also known as
turn-down codes or adverse action codes).

• Because tree SHAP explanations are offsets from a global
intercept, each ϕ j can be interpreted as the difference in д(x)
and the average of д(X) associated with some input feature
x j [18].

• Currently treeinterpreter may be inappropriate for some
GBM models. Treeinterpreter is locally accurate for some
decision tree and random forest models, but is known to be

inconsistent like many other feature importance methods
aside from Shapley approaches [16]. In experiments available
in the supplemental materials of this text, treeinterpreter is
seen to be locally inaccurate for some XGBoost GBMmodels.

7 GENERAL RECOMMENDATIONS
The following recommendations apply to several or all of the de-
scribed explanatory techniques or to the practice of applied inter-
pretable machine learning in general.

• Less complex models are typically easier to explain and sev-
eral types of machine learning models are directly inter-
pretable, e.g. scalable Bayesian rule lists [25]. For maximum
transparency in life- or mission-critical decision support
systems, use interpretable white-box machine learning mod-
els with model debugging techniques, post-hoc explanatory
techniques, and disparate impact analysis and remediation
techniques.

• Monotonicity is often a desirable characteristic in inter-
pretable models. (Of course it should not be enforced when a
modeled relationship is known to be non-monotonic.) Mono-
tonically constrained XGBoost and h2o-3 GBMs along with
the explanatory techniques described in this text are a direct,
non-disruptive, open source, and scalable way to train and
explain an interpretable machine learning model. A mono-
tonically constrained XGBoost GBM is trained and explained
in Section 8.

• Several explanatory techniques are usually required to cre-
ate good explanations for any given complex model. Users
should apply a combination global and local and low- and
high-fidelity explanatory techniques to a machine learning
model and seek consistent results across multiple explana-
tory techniques.

• Simpler low-fidelity or sparse explanations can be used to
understand more accurate, and sometimes more sophisti-
cated, high-fidelity explanations.

https://github.com/dmlc/xgboost
https://github.com/h2oai/h2o-3
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• Methods relying on surrogate models or generated data are
sometimes unpalatable to users. Users sometimes need to
understand their model on their data.

• Surrogate models can provide low-fidelity explanations for
an entire machine learning pipeline in the original feature
space if д is defined to include feature extraction or feature
engineering steps.

• Understanding and trust are related, but not identical, goals.
The discussed explanatory techniques should engender a
solid sense of understanding in model mechanisms and pre-
dictions. Always consider conducting additional model de-
bugging and disparate impact analysis and remediation to
foster even greater trust in model behavior.

• Consider production deployment of explanatory methods
carefully. Currently, the deployment of some open source
software packages is not straightforward, especially for the
generation of explanations on new data in real-time.

8 CREDIT CARD DATA USE CASE
Some of the discussed explanatory techniques and recommenda-
tions will now be applied to a basic credit scoring problem using a
monotonically constrained XGBoost binomial classifier and the UCI
credit card dataset [14]. Referring back to Figure ??, a training set
X and associated labels Y will be used to train a GBM with decision
tree base learners, selected based on domain knowledge from many
other types of hypotheses modelsH , using a monotonic splitting
strategy with gradient boosting as the training algorithm Amono,
to learn a final hypothesis model дmono, that approximates the true
signal generating function f governing credit default in X and Y
such that дmono ≈ f :

X,Y
Amono−−−−−→ дmono (7)

дmono is globally explainable with aggregated local Shapley val-
ues, decision tree surrogate models htree, and partial dependence
and ICE plots. Additionally each prediction made by дmono can be
explained using local Shapley explanations.

Thirty percent of the credit card dataset observations are ran-
domly partitioned into a labeled validation set and Pearson correla-
tion between дmono inputs and the target,Ydefault payment next month,
are calculated and stored. All features except for the target and the
observation identifier, XID, are used as дmono inputs. The signs of
the stored Pearson correlations are used to define the direction of
the monotonicity constraints w.r.t. each input feature. (Features
with small magnitude correlations or known non-monotonic be-
havior could also be left unconstrained.) Additional non-default
hyperparameter settings used to train дmono are presented in Table
2. A maximum of 1000 iterations were used to train дmono, with
early stopping triggered after 50 iterations without validation AUC
improvement. This configuration led to a final validation AUC of
0.781 after only 100 iterations.

The global feature importance of дmono evaluated in the valida-
tion set and ranked by mean absolute Shapley value is displayed

Table 2: дmono hyperparameters for the UCI credit card
dataset. Adequate hyperparameters were found by Carte-
sian grid search.

Hyperparameter Value
eta 0.08
subsample 0.9
colsample_bytree 0.9
maxdepth 15

Figure 7: Globally consistent Shapley summary plot for
дmono in a 30% validation set randomly sampled from the
UCI credit card dataset.

in Figure 7. XPAY_0 – a customer’s most recent repayment status,
XLIMIT_BAL – a customer’s credit limit, and XBILL_AMT1 – a cus-
tomer’s most recent bill amount are the most important features
globally, which aligns with reasonable expectations and basic do-
main knowledge. (A real-world credit scoring application would be
unlikely to use XLIMIT_BAL as an input feature because this feature
could cause target leakage. XLIMIT_BAL is used in this small data
example to improveдmono fit.) The monotonic relationship between
each input feature and дmono output is also visible in Figure 7. Nu-
meric Shapley explanation values appear to increase only as an
input feature value increases as for XPAY_0, or vice versa, say for
XLIMIT_BAL.

Partial dependence and ICE for дmono and the important input
feature XPAY_0 verify the monotonic increasing behavior of дmono
w.r.t. XPAY_0. For several percentiles of predicted probabilities and
on average, the output of дmono is low for XPAY_0 values -2 – 1 then
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Figure 8: Partial dependence and ICE curves for learned
GBM response function дmono and important input feature
XPAY_0 in a 30% validation set randomly sampled from the
UCI credit card dataset.

increases dramatically. XPAY_0 values of -2 – 1 are associated with
on-time or 1 month late payments. A large increase in predicted
probability of default occurs at XPAY_0 = 2 and predicted probabil-
ities plateau after XPAY_0 = 2. The lowest and highest predicted
probability customers do not display the same precipitous jump
in predicted probability at XPAY_0 = 2. If this dissimilar prediction
behavior is related to interactions with other input features, that
may be evident in a surrogate decision tree model.

Figure 9: htree for дmono in a 30% validation set randomly
sampled from the UCI credit card dataset. An image of a
depth-fivehtree directed graph is available in the supplemen-
tary materials described in Section A.

To continue explaining дmono, a simple depth-three htree model
is trained to represent дmono(X) in the validation set. htree is dis-
played in Figure 9. htree has a mean R2 across three random folds in
the validation set of 0.86 with a standard deviation of 0.0011 and a
mean RMSE across the same folds of 0.08 with a standard deviation
of 0.0003, indicating htree is likely accurate and stable enough to
be a helpful explanatory tool. The global importance of XPAY_0 and
the increase in дmono(x) associated with XPAY_0 = 2 is reflected in
the simple htree model, along with several potentially important
interactions between input features. For instance the lowest pre-
dicted probabilities from htree occur when a customer’s most recent
repayment status, XPAY_0, is less than 0.5 and their second most
recent payment amount, XPAY_AMT2, is greater than or equal to
NT$ 4747.5. The highest predicted probabilities from htree occur

when XPAY_0 ≥ 1.5, a customer’s fifth most recent repayment sta-
tus,XPAY_5, is 1 or more months late, and when a customer’s fourth
most recent bill amount, XBILL_AMT4, is less than NT$ 17399.5. In
this simple depth-three htree model, it appears that an interaction
between XPAY_0 and XPAY_AMT2 may be leading to the very low
probability of default predictions displayed in Figure 8, while in-
teractions between XPAY_0, XPAY_5, and XBILL_AMT4 are potentially
associated with the highest predicted probabilities. A more complex
and accurate depth-five htree model is available in the supplemen-
tal materials described in Section A and it presents greater detail
regarding the interactions and decision paths that could lead to the
modeled behavior for the lowest and highest probability of default
customers.

Figure 10 displays local Shapley explanation values for three
customers at the 10th, median, and 90th percentiles of дmono(X)
in the validation set. The plots in Figure 10 are representative of
the local Shapley explanations that could be generated for any
дmono(x), x ∈ X. The values presented in Figure 10 are aligned with
the general expectation that Shapley contributions will increase
for increasing values of дmono(x). Reason codes to justify decisions
based on дmono(x) predictions can also be generated for arbitrary
дmono(x) using local Shapley explanation values and the values
of input features in x. Observed values of x(i) are available in the
supplementary materials presented in Section A. For the customer
at the 90th percentile of дmono(X) the likely top three reason codes
to justify declining further credit are:

• Most recent payment is 2 months delayed.
• Fourth most recent payment is 2 months delayed.
• Third most recent payment amount is NT$ 0.

Analysis for an operational, mission-critical machine learning
model would likely involve further investigation of partial depen-
dence and ICE plots and perhaps deeper analysis of htree models
following Hu et al [13]. Analysis would also probably continue on
to fairness and model debugging techniques such as:

• Disparate impact analysis and remediation: to uncover
and remediate any disparate impact in model predictions or
errors across demographic segments [7].

• Residual analysis: to check the fundamental assumptions
of the model against relevant data partitions and investigate
outliers or observations exerting undue influence on д.

• Sensitivity analysis: to explicitly test the trustworthiness
of model predictions on simulated out-of-domain data or in
other simulated scenarios of interest.

A successful explanatory and diagnostic analysis must also include
remediating any discovered issues and documenting all findings.
Examples of more detailed analyses along with the URLs to the
data and software used to generate Figures 7 – 10 are available in
Section A.

9 CONCLUSION
This text aspires to hasten responsible adoption of explanatory
techniques and also to bring interpretable models and model de-
bugging and fairness methodologies to the attention of thoughtful
practitioners. Future work will analyze and test combinations of



Explainable Machine Learning KDD ’19 XAI Workshop, August 04–08, 2019, Anchorage, AK,

Figure 10: Complete, locally accurate feature contributions found using tree SHAP at three percentiles of дmono(X) in a 30%
validation set randomly sampled from the UCI credit card dataset.

interpretable models and explanatory, model debugging, and fair-
ness techniques in the context of creating accurate and transparent
systems for life- or mission-critical decision support applications.
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A ONLINE SOFTWARE RESOURCES
To make the discussed results useful and reproducible for practitioners, several online supporting materials and software resources are freely
available.

• Simulated data experiments, including additional experiments on random data, supplementary figures, and the UCI credit card dataset
use case are available at:

https://github.com/h2oai/mli-resources/tree/master/lime_shap_treeint_compare/README.md.

• General instructions for using these resources, including a Dockerfile which builds the complete runtime environment with all
dependencies, are available here:

https://github.com/h2oai/mli-resources.

• In-depth example disparate impact analysis, explanatory, and model debugging use cases for the UCI credit card dataset are available at:

https://github.com/jphall663/interpretable_machine_learning_with_python.

• A curated list of interpretability software is available at:

https://github.com/jphall663/awesome-machine-learning-interpretability.

https://github.com/h2oai/mli-resources/tree/master/lime_shap_treeint_compare/README.md
https://github.com/h2oai/mli-resources
https://github.com/jphall663/interpretable_machine_learning_with_python
https://github.com/jphall663/awesome-machine-learning-interpretability
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