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Abstract. Record linkage has a long tradition in both the statistical
and the computer science literature. We survey current approaches to
the record linkage problem in a privacy-aware setting and contrast these
with the more traditional literature. We also identify several important
open questions that pertain to private record linkage from different per-
spectives.

1 Introduction

Record linkage is an historically important statistical problem arising when data
about some population of individuals, is spread over several files. Most of the
literature focuses on the two file setting. The record linkage goal is to deter-
mine whether a record from one file corresponds to a record of a second file, in
the sense that the records describe the same individual. Winkler and others de-
scribe application areas, computational techniques and statistical underpinnings
in detail in [19, 2, 38, 39]. The typical purposes of record linkage are:

— data integration, e.g, to create a public use file that will allow others to
analyze the integrated data.
— as an intermediate step in performing a computation on the integrated data.

The overarching goal of privacy-preserving datamining (PPDM) [37] is to
perform “data mining” computations on a set of data, in a manner that prevents
both the computation, and the output of the computation from revealing “too
much” sensitive information about the units represented in the data. Our goal in
this paper is to detail recent advances at the intersection of record linkage and
PPDM, largely as a followup to an earlier survey by Winkler [39,40]. Whereas
Winkler assumed that all the data files were accessible to the party running the
computation, in our setting we remove this assumption. Instead, depending on
the setting and the problem at hand, we are interested in access to files that
may be somehow restricted, or not available at all.

Record linkage already plays a large role as a building block for privacy
preserving statistical analysis. For example, numerous papers already tacitly
assume that the files that are input to their procedures are a-priori matched, in
the sense that the correspondence between the units is known [24,23,22,12,13].
We describe some key challenges at the interface of record linkage and PPDM



and show the steps various authors have taken to address them. We overview the
basic record linkage approach and the secure multiparty computation literature
with the intent of demonstrating some common failure modes of so called privacy
preserving schemes. Then we survey the recent literature on privacy preserving
schemes for performing record linkage, and conclude by outlining what we see
are the key unsolved challenges in this area.

2 Record Linkage Overview

We begin by providing an overview of the record linkage problem in a non-private
setting. We see the traditional approaches as being composed of a series of dif-
ferent steps, which we explain in turn. We then give these steps the privacy-
preserving treatment in section 5. Currently, the literature on record linkage
involving two files is fairly mature [39, 19], whereas the problem of linking many
files has only begun to be studied (see for example the discussions in the con-
text of merging files for the purposes of multiple capture-recapture [14, 19, 32]).
Therefore in this paper we focus on the problem of record linkage between two
files.

2.1 Problem Definition

Suppose there are two data files A and B, each of which contains possibly dif-
ferent numbers of records, say a;, (¢ = 1...n) are the records belonging to file
A and likewise b;, (j =1...m) are the records in B. The records are in essence
vectors in which each component is a “field” or an attribute of the record, and
we may regard the records as being the elements of the product space of the
fields. For the purpose of this exposition we suppose that the fields in the two
files are the same (or otherwise somehow the data has been cleaned ahead of
time). When this is not the case then the problem is called “schema matching”
—see [33] for a treatment of this topic. Suppose that there are p fields that are
common to the files. We denote by a¥ the k" field of record a; and likewise for
B. In the database terminology, records correspond to rows of a file, whereas
the fields correspond to columns. The goal of record linkage is to determine the
pairs of records (a;, b;) corresponding to the same underlying individual.

Fellegi and Sunter formally studied this problem in their seminal paper [11].
They described an approach that partitioned the cartesian product of the files
A x B into three disjoint sets: M the set of “matches”, U the set of “non-
matches”, and C' a set which requires human intervention in order to classify.
The presence of this latter set is due to ambiguity in the data which is hard or
impossible for an automated procedure to solve. For example, several people with
a common first initial and last name may inhabit the same house, and so further
data may be required to determine whether or not two records correspond to
the same individual of such a household. The Felegi-Sunter approach [11] aims
to minimize the cardinality of C', subject to a user-specified upper bound on
the error rates in M and U. There are several modifications of this approach, a
number of which are described in [19].



2.2 Computing Similarity of Record Pairs

In essence, most modern statistical record linkage techniques build on the Fellegi-
Sunter idea and follow a common pattern. In a first stage, the cartesian product
A x B is preprocessed and cleaned. Then some “similarity function” is applied
to each element in the resulting file. Historically, the functions were indicators of
whether corresponding fields of the records matched or not, i.e., whether their
values for a particular fields were identical. These binary flags are referred to as
the “match variables.” Let m; ; be the vector of match variable corresponding
to the pair (a;,b;). We may have:

mij € {0)1};0, mi'c,j = 1{@? = bf}

where we use 1{-} to mean the function that takes value 1 when the predicate
in the braces is true, and 0 otherwise. In principle, there could be more match
variables than fields, as multiple different similarity functions could be applied
to different pairs of fields. For simplicity we omit a discussion of this variation
here. The alternative to exact match indicators is to compute a distance function
for the individual fields [8]. When fields are numeric then perhaps absolute or
euclidian difference is appropriate. When fields are strings such as names and
addresses, then string edit distances [21,2] are useful. Such distance measures
may be thresholded, i.e., reduced to binary match variables where the flag is
“on” whenever the distance falls below some cutoff. In this case, we may have:
m;; € {0,137, mf; = 1{d"(a},b}) < 7"}

1971

where d*(-,-) is the appropriate distance function for field k, and 73 is some
parameter that determines the thresholding. After this first step, there are n xm
sets of match variables, corresponding to the pairs of elements in the product of
the files. The match variables are either binary or real numbers depending on
what kinds of similarity functions that were applied.

2.3 Parameter Estimation

In the second step, we estimate the parameters of two models, namely the
conditional probabilities of the match variables, given that the records match:
po(mi j|(a;, b;) € M) and the probability for the match variables given that the
records don’t match pg(m; ;|(a;,b;) € U). Here the notation py(-) is used to
mean a probability density or mass function which is parameterized by some
vector 6 of parameters.

If there is plentiful labeled data (i.e., hand linked records of a similar nature)
to use for estimation, then we may estimate these parameters analytically using
a simple maximum likelihood approach [19]. In the absence of such data (the
usual situation for PPDM) estimation is more problematic. Nevertheless, we can
often use the EM algorithm [19]. Generally, there is not enough data to estimate
a completely general model for the match variables, so instead some we impose
additional structure [38]. Historically, a useful method was to restrict the models



to force conditional independence of the individual match variables. Winkler [40]
provides a discussion of more structured approaches, and Ravikumar et al. [30]
give a specific model with good performance.

2.4 Classification of Record Pairs

Since we are treating record linkage as a statistical problem, it is unlikely that
every record pair will be labeled correctly as a link or a non-link. Nevertheless, we
can tradeoff the amount of error in the final linkage against the amount of pairs
sent for clerical review. As Felligi and sunter demonstrated, the classification of
a particular pair (a;,b;) into M, U, C may be done by considering the likelihood
ratio of m; ; under the two models:

po(mi j|(ai,b;) € M)
po(mi jl(ai,b;) € U)

As Fellegi and Sunter [11] show, the optimal decision rule is given by:

Tig =

M Tij > C1
Y(ai, b)) =qC Co<ri; <Cy
U T < Co

This rule is essentially a simple test of hypothesis. One chooses constants
Cy, C for user-specified error levels for false-links and false non-links [36]. The
rule is optimal in the sense that among the classification rules with that achieve
these error rates, this rule assigns the fewest records for clerical review.

2.5 Blocking

When the sizes of the data files to be linked are moderate (e.g., tens of thousands
of records or more) then applying the above theory may be too inefficient, since
we would have to consider hundreds of millions of pairs. A common way to deal
with this problem is to perform a “blocking” phase in which we remove clear non-
links, leaving blocks of potential links. The terminology goes back in some sense
to the census uses where the population is divided into physical blocks, but also
reflects the experimental design notion of “blocking” to remove heterogeneity.

The idea is that a “reliable” field such as zip code or gender may be used
to quickly label some of the non-links. See [19] for discussion. The result is a
tradeoff of computational efficiency versus accuracy in the final linkage, however
the impact on the accuracy is usually fairly mild.

3 Overview of Privacy Preserving Data Mining

The field of “privacy preserving data mining” (PPDM) primarily focuses on
performing useful data analysis in such a way as to mitigate the risk of releasing
some private or secret information. On the surface, there are two distinct sets of



problems in this field. The first set includes problems of how two or more separate
parties each with private data, may compute some function of the union of their
data without having to reveal it. The second set focuses on how to determine
whether the result of a computation alone constitutes an invasion of privacy (a
identifiable release), and if so how to mitigate the release. When two parties need
to link their private data and then perform some computation on the resulting
linked records, both facets of PPDM are important to respect. In this section,
we give a brief overview of the salient features of the field, the goal being to
build enough sophistication to understand the subtleties of record linkage in a
private setting.

3.1 Secure Multiparty Computation

Suppose two parties each hold a separate piece of private data which they would
benefit from jointly analyzing. For example, the parties may be administrators
of hospitals or government agencies, who are bound by law to not disclose the
information of individuals in their databases. Nevertheless they may wish to join
their data to that of some medical research center or another agency in order to
fit a statistical model to the union of their data. Performing such computations
is the concern of a mature area in the PPDM literature called “Secure Multi-
party Computation” (SMC) see e.g., [27,26] for an overview. The goal is to
develop protocols consisting of local computations by individual parties, and the
transmitting of messages between the parties. Depending on the demands of the
parties involved, one of several models of security may be appropriate.

Perhaps the most well studied and rigorous formulation of a secure compu-
tation comes from cryptography [17,16]. The idea is that the protocol should
reveal no more information than would a fanciful “idealized” method in which
the private data are presented to a completely trusted third party, who performs
the computation and returns the results to each of the original parties. That is,
to any specific party, the computation itself should reveal no more than whatever
may be revealed by examining his input and output. An example of a protocol
that would fail to meet this criteria is if one party was sent all the private in-
puts, performed the computation locally and then broadcast the results to the
other parties. The reason this fails is because, in general, the party who does
the computation cannot infer the other’s data just from looking at his data and
the result, and so the messages passed in the proposed protocol has revealed too
much to him.

If it is understood that the parties will follow the protocol, but will try to
covertly infer whatever they may from the messages, then this is called the “semi-
honest” or “honest but curious” model. Using techniques from cryptography it
is theoretically possible [16] to take a protocol for the semi-honest model and
make it work under a malicious model, in which one of the parties tries to deviate
from the protocol in order to reveal information. Generally though, when the
task is inference on joint data, it seems likely that both parties would benefit
from the collaboration, and hence the semi-honest model may be a reasonable
assumption.



In order to build a protocol for a particular computation, we first make an
assumption about the computational power available to the parties. Then we
choose a “security parameter” (similar in idea to a key length) so that for a par-
ticular party, to determine the others’ private inputs becomes a computationally
intractable problem (e.g., similar to breaking public key encryption) [16].

An important theoretical result in this area is given by Yao [42] and simi-
larly [18], which show that any function of the parties private inputs may be
computed in this setting. The idea is that the parties arrange their computation
into a large circuit consisting of wires and gates, then apply a generic protocol
to evaluate it on their inputs. Details are given in [16] although for the time
being, such a generic protocol is primarily of theoretical interest, since it is pro-
hibitively expensive for all but very small computations. Nevertheless see [28]
for an implementation of the generic protocol. An area of study is the construc-
tion of protocols for specific problems, which often result in faster and more
practically applicable methods. A cornerstone of such techniques is homomor-
phic encryption [29] which allows parties to perform mathematical operations
on each others’ encrypted values.

3.2 Alternative Security Models

An alternative which results in fast and often simpler protocols is the “weak”
security model given in [9] and studied in [37] section 5.1.3. The idea of this
model is that any protocol is fine, so long as the output doesn’t reveal exactly
what any parties particular input was. Specifically, if there exists an infinitely
large set which could be substituted for a parties input, and result in the same
output, then the protocol is secure in this weak model. The authors acknowledge
that this definition is weak since this infinite set may be e.g., a small ball centered
around some point in space, and so may still reveal a great deal of information
[37]. Furthermore this definition has no mention of information leakage due to
the protocol itself, however it could be amended so that the definition must hold
for the intermediate messages as well as the final output. An analysis of some
weakly secure inner product protocols is given by [15], who conclude that the
weaker model presents a far greater prospect of information leakage than does
the cryptographic model.

A second recent alternative is the so-called “differential privacy” approach
due to Dwork and colleagues, e.g., see [10]. A randomized algorithm achieves
differential privacy if its distribution of outputs doesn’t change greatly when
the input database is changed by one record. This technique was developed to
prevent datamining schemes from releasing information which would identify
individuals in the data. Nevertheless it may be brought to bear on multiparty
computation. For example, for the problem of record linkage it is conceivable that
each party could use a randomized sanitization scheme on their data in order
to achieve differential privacy. Then, the data could be revealed to the other
parties, and then each party having his own copy of the complete sanitized data
could run whatever record linkage or datamining algorithm he wanted to. The
question which remains is whether differential privacy is a sufficiently strong



guarantee compared to the cryptographic model, and whether this randomized
sanitization scheme would corrupt the data so much that the results would be
meaningless.

Finally in some settings the existence of a trusted third party may be realistic.
Several protocols make explicit use of such a party [41,33,5,6,34], in a more
limited way.

4 Privacy Preserving Record Linkage

When the files to be matched are held by two different parties and are deemed
to be sensitive or private, then we may elicit the use of secure protocols in
order to perform the record linkage and whatever may be the final statistical
computation. This intersection of record linkage and PPDM has been of great
interest in the last decade. The purpose of this section is to first highlight some
of the unique challenges posed in this setting, and then to survey the results of
research which has sought to solve them.

When the goal is for two parties to integrate their private data, typically they
will only care about the set of matching records. If it was the case that they also
wanted to share the non-links then there would be no need for secrecy since in the
end all the data would become visible to both parties. Protocols which compute
the set of linked records and then output them to both parties are perhaps the
most well studied part of record linkage in the PPDM literature. In this case,
the goal is to perform record linkage without revealing anything about the non-
linked records (besides of course, whatever may be inferred of them by means of
the linked records). In the cryptographic model this means e.g., that the values
of the match variables as well as the parameters of py should not become known
explicitly to either party. Even if the computation of the match variables is done
securely, for any party to know the values constitutes a failure of security since
in general these values are not implied exactly by the linkage itself. For example,
while it may be the case that linked records have high similarity, the exact values
must remain unknown to either party.

It is important to pay attention to these details, consider a simple model
where we allow both parties to learn the similarity measures. Say the data are
real vectors and the computed similarity scores are the square or absolute errors
between the components. In this case for example the party who holds A may

consider two of his distinct values a’,fb, af along with the computed similarities

m’fl" > mf ;- Now he has two distinct points on the real line as well as the distance

of b? to each point. Therefore he may solve to recover exactly the value of b?,
this way he may reveal he entirety of B, and likewise the owner of B may reveal
A. This is a simple example but it serves to illustrate the problems that might
arise from revealing intermediate values.

Another important distinction between the private and the usual non-private
setting is that resorting to human clerical workers for disambiguation seems
tantamount to an invasion of privacy. Although recent methods have focused on
performing pure statistical linkage with no need for human intervention, there



is a price to pay in the form of increased error rates. When the overarching
goal is to perform some statistical analysis on the linked data, then the error
in the linkage must be accounted for in order to obtain a valid analysis. This is
in contrast to the usual setting where in essence the human-curated data may
be treated as completely correct. Maintaining uncertainty about the linkage is
an area which has begun to draw attention in the statistical literature, see e.g.,
[25].

When the goal is to perform some datamining task on the integrated data
(e.g., [24,23,22,12,13]) then the data themselves are not part of the output.
Instead, the final output of the protocol is e.g., a set of estimated regression
coefficients on the integrated data, or some other such set of quantities. In this
case, we need to take care to protect not only the non-links but also the linked
data themselves. For instance, running a secure record linkage algorithm that
outputs the links, and then using these data to fit a regression model does not
constitute a secure protocol in the cryptographic model. The reason for this is
that in general the data themselves are not implied by the regression output.

We repeat that, while in principle all the problems of privacy preserving
datamining are solved by the generic protocol of Yao [42], the computational
and communication demands of this method are too great in practice [37]. For
this reason it is necessary in to devise protocols for the specific problem of record
linkage, a problem that we now examine.

5 Methods in Privacy Preserving Record Linkage

While many authors in the literature propose end-to-end secure protocols for
record linkage, oftentimes the individual steps may be seen as sub-protocols that
are strung together into a secure protocol. Here we describe proposed methods
for the steps identified in section 2. We begin, however, with a discussion of
private exact matching, which is of historical importance.

5.1 Database Joins and Set Intersection

One of the earliest mentions of record linkage in a private setting is given in
[1]. Here the author considers various classical problems from databases, ported
to the private setting. The most relevant problem is the computing of a so
called “equijoin.” This may be considered a variant of record linkage in which
two records link whenever they agree exactly on some specific subset of their
fields. This then obviates both the need for parameter estimation and statistical
inference of the joins, since a deterministic decision is made based upon the single
match variable for each pair of records. The goal is to output the entire set of
linked records, therefore it is not a concern if the match variables are revealed,
since they are implied by the output.

A potential way to compute such an equijoin might be for both parties to
apply some one-way hash function [17] to the fields of their records, then share
them with each other and see which hashed values match. One might think



that if the hash function is computationally hard to invert then this protocol
would be safe. As shown in [1], this naive method fails since the hash function
is deterministic. First it may be possible for either party to mount a dictionary
attack in which they hash every possible value a field may take on and then see
which ones match up to the other party’s data. Secondly, when this attack is
infeasible the parties may still consider the frequencies with which the hashed
values appear. Using this along with knowledge of the distribution of field values
(say, estimated empirically from their data), they may be able to reveal some
values with high confidence. The way [1] resolve the issue is through the use of
a semantically secure [17] encryption scheme. Using such a scheme guarantees
that both of these proposed attacks will fails, since it implies that the encryp-
tions are random, and the distributions of them do not differ significantly when
the plaintext values are changed. The original protocol must then be modified
to accommodate randomness in the hashing. Agrawal’s idea paved the way for
interest in private record linkage. From a theoretical perspective it is good start-
ing point, however two questions remained. The first is whether the overhead of
using this encryption scheme is too great. For example, in order for encryption
to be sufficiently hard to break, usually the keys must be chosen to be thousands
of bits long. This means that there is a great deal of communication cost, as well
as computation since basic mathematical operations on such large numbers may
be costly. The second question which remains is whether this approach may be
extended to support non-exact matching such as is usual in record linkage.

5.2 Record Pair Similarity

The question of non-exact matching is partially addressed in [5,6,34]. These
works in essence compute similarity scores for pairs of records via a reduction
to a secure set intersection protocol. The idea applies mainly to text data such
as names and addresses. First such fields are broken up into a set of “n-grams”
which are the substrings of length n. Then since each field is now represented
by a set, the size of the intersection of such sets may be compared with the
size of the union, to get a measure of the degree of overlap between the two
sets. If the intersection is large then the two strings have a large number of
common substrings and so are regarded as close to each other and a potential
candidate for matching. In principle, the secure protocol of [1] could be used
for computing the intersections, however the authors are concerned about the
computational overhead. Therefore they resort to a variant of the naive insecure
approach mentioned in [1], in which a deterministic one way hashing function
is used. To overcome the security issues the authors here instead suggest that
a trusted third party may be employed to look at the hashed values and report
the cardinality of the intersections. While in principle this approach would be
very efficient, it is perhaps conceptually unappealing since the assumption of a
trusted third party may be too restrictive in a wide variety of real problems.
An alternative method to compute string similarity is given by [31]. They
present a secure two party protocol which computes approximate inner products
between real vectors. Their idea is that strings which consist of multiple words



may be represented in a vector space model by the well known TF-IDF transfor-
mation which was shown to be useful in record linkage [7]. Their approximation
scheme makes use of a cryptographic protocol for secure set intersection, and
therefore may be computationally demanding. Whats more, the approach is ap-
proximate and to increase the accuracy of the approximation requires increasing
the size of the sets which get passed to the sub-protocol.

Another secure vector space method to compute edit distances is described
by [33]. Their idea involves a so called metric embedding approach (see e.g., [4]).
First some random set of strings is agreed upon by the two parties. Then each
party computes the edit distance [2] of his records to each random string. With
this in hand, the records may be described by a vector of real numbers in which
each component is a distance to a random string. Then it may be shown that
the euclidian distance between these vectors corresponds approximately to the
string edit distance between the records. In principle, distances between strings
could now be approximated by means of a secure inner product protocol, since
if we use ¢(+) to denote the embedding we have:

d(a;’,05)* = |lo(af) — o513 = [l6(ad)lI3 + [[e(B))I13 — 26(ai) " H(b)

The last term is the inner product, and the other two terms may be computed
locally by either party. The authors instead propose to use a third party protocol
in which the embedded strings are sent to the third party for computation of
these distances. It appears that despite the elegance of this approach, the third
party would still be able to mount a frequency based attack on these embeddings.
Nevertheless the metric embedding idea is compelling since it results in low-
dimensional vectors [33], and so in principle it allows reduction of string edit
distance computation to secure inner products which are already well-studied in
the literature (e.g., [15]).

We note that all of the string similarity protocols make use of either set-
intersection or inner products as a subprotocol. In essence any such protocol
could be supplanted in place of the authors’ suggestions, and the privacy guar-
antees and complexity of the resulting protocol would depend on those same
characteristics of the sub-protocol. Therefore developing fast protocols for these
two problems is important for the future of private record linkage. Although
current protocols are reasonable in principle, remember that they will be run on
every element of the direct product of the files, which could easily be millions of
pairs for even modest size data.

Because a third party may decide whether or not certain similarity scores
constitute a link, those protocols which use such a party evidently may output
the linkage decision rather than just the similarity. For two party protocols it is
less trivial to get the linkage classifications without revealing the similarity. One
way, if the similarity scores are computed using a cryptographic protocol, would
be to threshold it before it is allowed to be decrypted. For example reducing
similarity to the inner product and using [15] results in an encrypted value held
by one party, where it may only be decrypted by the other. In this case the



holding party may apply a certain sequence of operations to the ciphertext in
order to reduce it to a binary flag corresponding to thresholding against some
constant value. One such approach is via a reduction to the so called “million-
aires problem” proposed by Yao, which in essence is a protocol to compute an
inequality. See [3] for a recent approach.

5.3 Blocking

In the non-private setting, blocking [38] greatly reduces the number of record
pairs to be classified. Several authors have ported this idea to the private setting.
The idea of blocking is to use simple heuristics based on the record similarities
to quickly remove obvious non-links from consideration. In the private setting,
however, evaluating such heuristics may itself be a costly process.

One approach is given in [20]. In order to make the blocking step efficient
the proposal is to first k-anonymize [35] the database rows, then share them.
While the authors choose k-anonymity for its conceptual simplicity there is the
prospect that other sanitization schemes could be used such as permuting with
noise to achieve differential privacy [10]. After obtaining the sanitized version
of the other party’s data, the hope is that each party may infer a great deal
of non-matches. However they won’t be able to infer matches perfectly due to
the corruption of the private data due to the sanitization. Therefore a second
phase begins in which cryptographic protocols are used to resolve ambiguous
record pairs. This way, the proposed scheme achieves a three-way tradeoff of
computational overhead vs possible leakage of values vs accuracy of the solu-
tion. For example if the sanitization scheme leaves many values unchanged, then
privacy is certainly breached, however the resulting accuracy of the linkage will
be high, and the cost due to cryptographic protocols will be small. We note
that since publication, there have been several published vulnerabilities in the
k-anonymization framework [10].

Another paper which employs a blocking approach is [41]. Here the idea is
to first transform the records into numeric vectors as in [33], and then perform
a secure record linkage technique on these vectors. The protocol is structured in
two rounds, the first of which is a blocking phase. The values are permuted and
then shared so that the parties may quickly reject obvious non-matches. After
this initial step, the remaining candidate record pairs are evaluated through a
reduction to a secure inner product protocol as described above. The particular
protocol they use may be considered as weakly secure [37].

Note that no matter the settings of the sanitization scheme, these methods
will fail to meet the criteria of security in the cryptographic model. To achieve
that standard, the sanitization scheme would have to render the data indis-
tinguishable from any arbitrary dataset, and hence would render the blocking
phase impossible. Therefore these approaches to blocking may only be used in
a weaker security model. In principle it may be possible to do blocking in the
cryptographic model, by using a cryptographic protocol for the blocking heuris-
tic; however, this may not be significantly faster than not performing blocking
at all, e.g., if such a protocol is costly relative to the full matching protocol for



a record pair. Nevertheless it is possible in practice that the guarantee afforded
through the use of differential privacy [10] may be sufficient, so that a blocking
scheme based on sanitized data may be feasible.

6 Prominent Unsolved Challenges

The main component of record linkage currently missing from the privacy-aware
treatment is that of parameter estimation. All the works above made use of a-
priori agreed upon thresholds for the similarity scores, and classify a record as
a match if some a-priori agreed upon subset of fields are similar. This technique
may result in good linkage under some conditions, however by sidestepping the
difficult parameter estimation step, the result is a record linkage with no guar-
antees regarding error rates.

Another challenge which deserves attention is the development of techniques
for record linkage which may propagate uncertainty through to subsequent sta-
tistical analysis. One approach is mentioned by Lahiri and Larsen [25] where the
goal is to identify additional bias introduced by record linkage and remove it in
the final calculation. More general techniques are required, but they may end up
being different depending on the type of statistical analysis which is required.
Such techniques will be very important, especially when the end result involves
confidence intervals or hypothesis testing. The reason is that these are meant to
come with well understood statistical guarantees (e.g., the probability of incor-
rectly rejecting a hypothesis is below some level «). When there is uncertainty
in the data itself, then this uncertainty must be modeled in order to have such
guarantees in the end.

In order for record linkage to be successfully applied to large databases, it will
be important to increase the speed of the cryptographic underpinnings. While
using clever protocols may reduce the number of operations (e.g., inner products)
performed, ultimately the speed of these operations determines the feasibility of
the secure approach.

Privacy-aware record linkage is a crucial problem lying at the intersection of
statistics, computer science, and cryptography. We have provided an overview
of the recent literature on the topic which builds on earlier reviews and the
fundamental approach of Fellegi and Sunter pairs of data files. Extensions of of
all of the methods described here to the case of linkage across multiple files, in
the presence of measurement error remains a major statistical challenge.
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