
Programming
Teclmiques

S. L. Graham, R. L. Rivest
Editors

Communicating
Sequential Processes
C.A.R. Hoare
The Queen's University
Belfast, Northern Ireland

This paper suggests that input and output are basic
primitives of programming and that parallel
composition of communicating sequential processes is a
fundamental program structuring method. When
combined with a development of Dijkstra's guarded
command, these concepts are surprisingly versatile.
Their use is illustrated by sample solutions of a variety
of familiar programming exercises.

Key Words and Phrases: programming,
programming languages, programming primitives,
program structures, parallel programming, concurrency,
input, output, guarded commands, nondeterminacy,
coroutines, procedures, multiple entries, multiple exits,
classes, data representations, recursion, conditional
critical regions, monitors, iterative arrays

CR Categories: 4.20, 4.22, 4.32

1. Introduction

Among the primitive concepts of computer program-
ming, and of the high level languages in which programs
are expressed, the action of assignment is familiar and
well understood. In fact, any change of the internal state
of a machine executing a program can be modeled as an
assignment of a new value to some variable part of that
machine. However, the operations of input and output,
which affect the external environment of a machine, are
not nearly so well understood. They are often added to
a programming language only as an afterthought.

Among the structuring methods for computer pro-
General permission to make fair use in teaching or research of all

or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

This research was supported by a Senior Fellowship of the Science
Research Council.

Author's present address: Programming Research Group, 45, Ban-
bury Road, Oxford, England.
© 1978 ACM 0001-0782/78/0800-0666 $00.75

6 6 6

grams, three basic constructs have received widespread
recognition and use: A repetitive construct (e.g. the while
loop), an alternative construct (e.g. the conditional
if..then..else), and normal sequential program composi-
tion (often denoted by a semicolon). Less agreement has
been reached about the design of other important pro-
gram structures, and many suggestions have been made:
Subroutines (Fortran), procedures (Algol 60 [15]), entries
(PL/I), coroutines (UNIX [171), classes (SIMULA 67 [5]),
processes and monitors (Concurrent Pascal [2]), clusters
(CLU [13]), forms (ALPHARD [19]), actors (Hewitt [1]).

The traditional stored program digital computer has
been designed primarily for deterministic execution of a
single sequential program. Where the desire for greater
speed has led to the introduction of parallelism, every
attempt has been made to disguise this fact from the
programmer, either by hardware itself (as in the multiple
function units of the CDC 6600) or by the software (as
in an I /O control package, or a multiprogrammed op-
erating system). However, developments of processor
technology suggest that a multiprocessor machine, con-
structed from a number of similar self-contained proc-
essors (each with its own store), may become more
powerful, capacious, reliable, and economical than a
machine which is disguised as a monoprocessor.

In order to use such a machine effectively on a single
task, the component processors must be able to com-
municate and to synchronize with each other. Many
methods of achieving this have been proposed. A widely
adopted method of communication is by inspection and
updating of a common store (as in Algol 68 [18], PL/I,
and many machine codes). However, this can create
severe problems in the construction of correct programs
and it may lead to expense (e.g. crossbar switches) and
unreliability (e.g. glitches) in some technologies of hard-
ware implementation. A greater variety of methods has
been proposed for synchronization: semaphores [6],
events (PL/I), conditional critical regions [10], monitors
and queues (Concurrent Pascal [2]), and path expressions
[3]. Most of these are demonstrably adequate for their
purpose, but there is no widely recognized criterion for
choosing between them.

This paper makes an ambitious attempt to find a
single simple solution to all these problems. The essential
proposals are:
(1) Dijkstra's guarded commands [8] are adopted (with
a slight change of notation) as sequential control struc-
tures, and as the sole means of introducing and control-
ling nondeterminism.
(2) A parallel command, based on Dijkstra's parbegin
[6], specifies concurrent execution of its constituent se-
quential commands (processes). All the processes start
simultaneously, and the parallel command ends only
when they are all finished. They may not communicate
with each other by updating global variables.
(3) Simple forms of input and output command are
introduced. They are used for communication between
concurrent processes.

Communications August 1978
of Volume 21
the ACM Number 8

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359576.359585&domain=pdf&date_stamp=1978-08-01

(4) Such communication occurs when one process
names another as destination for output a n d the second
process names the first as source for input. In this case,
the value to be output is copied from the first process to
the second. There is no automatic buffeting: In general,
an input or output command is delayed until the other
process is ready with the corresponding output or input.
Such delay is invisible to the delayed process.
(5) Input commands may appear in guards. A guarded
command with an input guard is selected for execution
only if and when the source named in the input com-
mand is ready to execute the corresponding output com-
mand. If several input guards of a set of alternatives
have ready destinations, only one is selected and the
others have no effect; but the choice between them is
arbitrary. In an efficient implementation, an output com-
mand which has been ready for a long time should be
favored; but the defmition of a language cannot specify
this since the relative speed of execution of the processes
is undefmed.
(6) A repetitive command may have input guards. If all
the sources named by them have terminated, then the
repetitive command also terminates.
(7) A simple pattern-matching feature, similar to that of
[16], is used to discriminate the structure of an input
message, and to access its components in a secure fash-
ion. This feature is used to inhibit input of messages that
do not match the specified pattern.

The programs expressed in the proposed language
are intended to be implementable.both by a conventional
machine with a single main store, and by a fixed network
of processors connected by input/output channels (al-
though very different optimizations are appropriate in
the different cases). It is consequently a rather static
language: The text of a program determines a fixed
upper bound on the number of processes operating
concurrently; there is no recursion and no facility for
process-valued variables. In other respects also, the lan-
guage has been stripped to the barest minimum necessary
for explanation of its more novel features.

The concept of a communicating sequential process
is shown in Sections 3-5 to provide a method of express-
ing solutions to many simple programming exercises
which have previously been employed to illustrate the
use of various proposed programming language features.
This suggests that the process may constitute a synthesis
of a number of familiar and new programming ideas.
The reader is invited to skip the examples which do not
interest him.

However, this paper also ignores many serious prob-
lems. The most serious is that it fails to suggest any proof
method to assist in the development and verification of
correct programs. Secondly, it pays no attention to the
problems of efficient implementation, which may be
particularly serious on a traditional sequential computer.
It is probable that a solution to these problems will
require (1) imposition of restrictions in the use of the
proposed features; (2) reintroduction of distinctive no-

tations for the most common and useful special cases;
(3) development of automatic optimization techniques;
and (4) the design of appropriate hardware.

Thus the concepts and notations introduced in this
paper (although described in the next section in the form
of a programming language fragment) should not be
regarded as suitable for use as a programming language,
either for abstract or for concrete programming. They
are at best only a partial solution to the problems tackled.
Further discussion of these and other points will be
found in Section 7.

2. Concepts and Notations

The style of the following description is borrowed
from Algol 60 [15]. Types, declarations, and expressions
have not been treated; in the examples, a Pascal-like
notation [20] has usually been adopted. The curly braces
{ } have been introduced into BNF to denote none or
more repetitions of the enclosed material. (Sentences in
parentheses refer to an implementation: they are not
strictly part of a language defmition.)

<command> :.--- <simple command>l<structured command>
<simple command> :.--- <null command>l<assignment command>

I<input command>l<output command>
<structured command> :.--- <alternative command>

I<repetitive command>l<parallel command>
<null command> :.--- skip
<command list> :.--- {<declaration>; I<command>;} <command>

A command specifies the behavior of a device exe-
cuting the command. It may succeed or fail. Execution
of a simple command, if successful, may have an effect
on the internal state of the executing device (in the case
of assignment), or on its external environment (in the
case of output), or on both (in the case of input). Exe-
cution of a structured command involves execution of
some or all of its constituent commands, and if any of
these fail, so does the structured command. (In this case,
whenever possible, an implementation should provide
some kind of comprehensible error diagnostic message.)

A null command has no effect and never fails.
A command list specifies sequential execution of its

constituent commands in the order written. Each decla-
ration introduces a fresh variable with a scope which
extends from its declaration to the end of the command
list.

2.1 Parallel Commands

<parallel command> :.--- [<process> {I I<process>}]
<process> :.--- <process label> <command list>
<process label> :.--- <empty>l<ident i f ier> ::

I<identifier>(<label subscript>{,<label subscript>}) ::
<label subscript> :.--- <integer constant>l<range>
<integer constant> :.--- <numera l>l<bound variable>
<bound variable> :.--- <identifier>
<range> :.~ <bound variable>:<lower bound>. .<upper bound>
<lower bound> :.~ <integer constant>
<upper bound> :.~ <integer constant>

667 Communications August 1978
of Volume 21
the ACM Number 8

Each process of a parallel command must be disjoint
from every other process of the command, in the sense
that it does not mention any variable which occurs as a
target variable (see Sections 2.2 and 2.3) in any other
process.

A process label without subscripts, or one whose label
subscripts are all integer constants, serves as a name for
the command list to which it is prefixed; its scope extends
over the whole of the parallel command. A process
whose label subscripts include one or more ranges stands
for a series of processes, each with the same label and
command list, except that each has a different combi-
nation of values substituted for the bound variables.
These values range between the lower bound and the
upper bound inclusive. For example, X(i:l..n) :: CL
stands for

X(l) :: CEll[X(2):: CL211...[IX(n) :: CL~

where each CLy is formed from CL by replacing every
occurrence of the bound variable i by the numeral j .
After all such expansions, each process label in a parallel
command must occur only once and the processes must
be well formed and disjoint.

A parallel command specifies concurrent execution
of its constituent processes. They all start simultaneously
and the parallel command terminates successfully only
if and when they have all successfully terminated. The
relative speed with which they are executed is arbitrary.
Examples:
(1) [cardreader?cardimage[[lineprinter!lineimage]

Performs the two constituent commands in parallel,
and terminates only when both operations are complete.
The time taken may be as low as the longer of the times
taken by each constituent process, i.e. the sum of its
computing, waiting, and transfer times.

(2) [west :: DISASSEMBLEIlX :: SQUASH I [east :: ASSEMBLE]

The three processes have the names "west," "X," and
"east." The capitalized words stand for command lists
which will be defined in later examples.

(3) [room :: ROOM I Ifork(i:0..4) :: FORK I Iphil(i:0..4) :: PHIL]

There are eleven processes. The behavior of "room"
is specified by the command list ROOM. The behavior of
the five processes fork(0), fork(l), fork(2), fork(3),
fork(4), is specified by the command list FORK, within
which the bound variable i indicates the identity of the
particular fork. Similar remarks apply to the five proc-
esses PHIL.

2.2 Assignment Commands

<assignment command> :.--- <target variable> := <expression>
<expression> :.-= <simple expression>l<structured expression>
<structured expression> :~ <constructor>(<expression list>)
<constructor> :.--- <ident i f ier>l<empty>
<expression list> :-- <empty>l<expression>{,<expression>}
<target variable> :.--- <simple variable>l<structured target>
<structured target> :.--- <constructor>(<target variable list>)
<target variable list> : ~ <empty>[<target variable>

{,<target variable>}

668

An expression denotes a value which is computed by
an executing device by application of its constituent
operators to the specified operands. The value of an
expression is undefined if any of these operations are
undefined. The value denoted by a simple expression
may be simple or structured. The value denoted by a
structured expression is structured; its constructor is that
of the expression, and its components are the list of
values denoted by the constituent expressions of the
expression list.

An assignment command specifies evaluation of its
expression, and assignment of the denoted value to the
target variable. A simple target variable may have as-
signed to it a simple or a structured value. A structured
target variable may have assigned to it a structured value,
with the same constructor. The effect of such assignment
is to assign to each constituent simpler variable of the
structured target the value of the corresponding compo-
nent of the structured value. Consequently, the value
denoted by the target variable, if evaluated after a suc-
cessful assignment, is the same as the value denoted by
the expression, as evaluated before the assignment.

An assignment fails if the value of its expression is
undefined, or if that value does not match the target
variable, in the following sense: A simple target variable
matches any value of its type. A structured target variable
matches a structured value, provided that: (1) they have
the same constructor, (2) the target variable list is the
same length as the list of components of the value, (3)
each target variable of the list matches the corresponding
component of the value list. A structured value with no
components is known as a "signal."

Examples:
(1) x . - - - x+ 1

(2) (x, y) - - (y, x)
(3) x .--- cons(left, right)

(4) cons(left, right) .--- x

(5) insert(n) ~ insert(2,x + 1)
(6) c .--- PO

(7) .P0 .--- c

the value of x after the assignment
is the same as the value of x + 1
before.

exchanges the values of x and y.
constructs a structured value and

assigns it to x.
fails if x does not have the form

cons(y, z); but if it does, then y is
assigned to left, and z is assigned
to right.

equivalent to n .--- 2*x + l.
assigns to c a "signal" with con-

structor P, and no components.
fails if the value of c is not P0 ;

otherwise has no effect.
(8) insert(n) .--- has(n) fails, due to mismatch.

Note: Successful execution of both (3) and (4) ensures
the truth of the postcondition x = cons(left, right); but
(3) does so by changing x and (4) does so by changing
left and right. Example (4) will fail if there is no value of
left and right which satisfies the postcondition.

2.3 Inimt and Output Commands

<input command> :.~ <source>?<target variable>
<output command> :.--- <destination>!<expression>
<source> :.~ <process name>

Communications August 1978
of Volume 2 l
the ACM Number 8

<destination> :.--- <process name>
<process name> :.= <identifier>[<identifier>(<subscripts>)
<subscripts> ::= <integer expression>{,<integer expression>}

Input and output commands specify communication
between two concurrently operating sequential processes.
Such a process may be implemented in hardware as a
special-purpose device (e.g. cardreader or lineprinter), or
its behavior may be specified by one of the constituent
processes of a parallel command. Communication occurs
between two processes of a parallel command whenever
(1) an input command in one process specifies as its
source the process name of the other process; (2) an
output command in the other process specifies as its
destination the process name of the first process; and (3)
the target variable of the input command matches the
value denoted by the expression of the output command.
On these conditions, the input and output commands are
said to correspond. Commands which correspond are
executed simultaneously, and their combined effect is to
assign the value of the expression of the output command
to the target variable of the input command.

An input command fails if its source is terminated.
An output command fails if its destination is terminated
or if its expression is undefined.

(The requirement of synchronization of input and
output commands means that an implementation will
have to delay whichever of the two commands happens
to be ready first. The delay is ended when the corre-
sponding command in the other process is also ready, or
when the other process terminates. In the latter case the
first command fails. It is also possible that the delay will
never be ended, for example, if a group of processes are
attempting communication but none of their input and
output commands correspond with each other. This form
of failure is known as a deadlock.)

Examples:

(1) cardreader?cardimage

(2) lineprinter!lineimage

(3) X?(x, y)

(4) DIV!(3.a + b, 13)

from cardreader, read a card and
assign its value (an array of char-
acters) to the variable cardimage

to lineprinter, send the value of
lineimage for printing

from process named X, input a pair
of values and assign them to x
andy

to process DIV, output the two
specified values.

Note: If a process named DIV issues command (3), and a process
named X issues command (4), these are executed simultaneously,
and have the same effect as the assignment: (x , y) ~ (3*a + b, 13)
(m x ~ 3 * a + b ; y ~ 13).

(5) console(0?c

(6) console(. /- I)!"A"

(7) x(o?v()

(8) sem!P()

from the/ th element of an array of
consoles, input a value and assign
it to c

to the (j - l)th console, output
character "A"

from the/th of an array of processes
X, input a signal V(); refuse to
input any other signal

to sem output a signal P()

669

2.4 Alternative and Repetitive Commands

<repetitive command> :.---,<alternative command>
<alternative command> :-- [<guarded command>

(13<gnarded command>}]
<guarded command> :~ <guard> ----, <command list>

I(<range>{,<range>})<guard> --, <command list>
<guard> :.--- <guard list>l<guard list>;<input command>

I<input command>
<guard list> :~ <guard element>(;<gnard element>}

<guard element> :~ <boolean expression>l<declaration>

A guarded command with one or more ranges stands
for a series of guarded commands, each with the same
guard and command list, except that each has a different
combination of values substituted for the bound varia-
bles. The values range between the lower bound and
upper bound inclusive. For example, (i:l..n)G --~ CL
stands for

G1 ~ CLI[IG2 --> CL2n...[IGn ~ CLn

where each Gj --> CLj is formed from G --, CL by
replacing every occurrence of the bound variable i by the
numeral j .

A guarded command is executed only if and when
the execution of its guard does not fail. First its guard is
executed and then its command list. A guard is executed
by execution of its constituent elements from left to right.
A Boolean expression is evaluated: If it denotes false, the
guard fails; but an expression that denotes true has no
effect. A declaration introduces a fresh variable with a
scope that extends from the declaration to the end of the
guarded command. An input command at the end of a
guard is executed only if and when a corresponding
output command is executed. (An implementation may
test whether a guard fails simply by trying to execute it,
and discontinuing execution if and when it fails. This is
valid because such a discontinued execution has no effect
on the state of the executing device.)

An alternative command specifies execution of ex-
actly one of its constituent guarded commands. Conse-
quently, if all guards fail, the alternative command fails.
Otherwise an arbitrary one with successfully executable
guard is selected and executed. (An implementation
should take advantage of its freedom of selection to
ensure efficient execution and good response. For ex-
ample, when input commands appear as guards, the
command which corresponds to the earliest ready and
matching output command should in general be pre-
ferred; and certainly, no executable and ready output
command should be passed over unreasonably often.)

A repetitive command specifies as many iterations as
possible of its constituent alternative command. Conse-
quently, when all guards fail, the repetitive command
terminates with no effect. Otherwise, the alternative com-
mand is executed once and then the whole repetitive
command is executed again. (Consider a repetitive com-
mand when all its true guard lists end in an input guard.
Such a command may have to be delayed until either (1)
an output command corresponding to one of the input

Communications August 1978
of Volume 21
the ACM Number 8

guards becomes ready, or (2) all the sources named by
the input guards have terminated. In case (2), the repet-
itive command terminates. If neither event ever occurs,
the process fails (in deadlock.)
Examples:

(l) [x >_ y---~ m .--- xOy_> x--~ m ~ y]

If x _> y, assign x to m; i f y >_ x assign y to m; if both
x _> y and y >_ x, either assignment can be executed.

(2) i .~ 0;*[i < size; content(/) # n ~ i .~ i + 1]

The repetitive command scans the elements con-
tent(i), for i = 0, 1 until either i >_ size, or a value
equal to n is found.

(3) ,[c:character; west?c ~ east!c]

This reads all the characters output by west, and
outputs them one by one to east. The repetition termi-
nates when the process west terminates.

(4) ,[(i:l. .10)continue(t); console(i)?c-: , X!(i, c); console(0!ack();
continue(i) := (c # sign off)]

This command inputs repeatedly from any of ten
consoles, provided that the corresponding element of the
Boolean array continue is true. The bound variable i
identifies the originating console. Its value, together with
the character just input, is output to X, and an acknowl-
edgment signal is sent back to the originating console. If
the character indicated "sign off," continue(i) is set false,
to prevent further input from that console. The repetitive
command terminates when all ten elements of continue
are false. (An implementation should ensure that no
console which is ready to provide input will be ignored
unreasonably often.)

(5) ,In:integer; X?insert(n) ---~ I N S E R T
On:integer; X?has(n) ~ SEARCH; X!(i < size)
]

(Here, and elsewhere, capitalized words INSERT and
SEARCH stand as abbreviations for program text defined
separately.)

On each iteration this command accepts from X either
(a) a request to "insert(n)," (followed by INSERT) or (b)
a question "has(n)," to which it outputs an answer back
to X. The choice between (a) and (b) is made by the next
output command in X. The repetitive command termi-
nates when X does. If X sends a nonmatching message,
deadlock will result.

(6) *[X?V 0 ~ val := val + 1
0val > 0; Y?PO --~ val := val - 1

1

On each iteration, accept either a V 0 signal from X
and increment val, or a PO signal from Y, and decrement
val. But the second alternative cannot be selected unless
val is positive (after which val will remain invariantly
nonnegative). (When val > 0, the choice depends on the
relative speeds of X and Y, and is not determined.) The
repetitive command will terminate when both X and Y
are terminated, or when X is terminated and val <_ 0.

670

3. Coroutines

In parallel programming coroutines appear as a more
fundamental program structure than subroutines, which
can be regarded as a special case (treated in the next
section).

3.1 COPY
Problem: Write a process X to copy characters output by
process west to process, east.
Solution:

X :: ,[c:character; west?c ~ east!c]

Notes: (1) When west terminates, the input "west?e" will
fail, causing termination of the repetitive command, and
of process X. Any subsequent input command from east
will fail. (2) Process X acts as a single-character buffer
between west and east. It permits west to work on
production of the next character, before east is ready to
input the previous one.

3.2 S Q U A S H
Problem: Adapt the previous program to replace every
pair of consecutive asterisks "**" by an upward arrow
"~". Assume that the final character input is not an
asterisk.
Solution:

X :: ,[c:character; west?c --~
[c # asterisk --~ east!c
0c = asterisk ---~ wesOc;

[c # asterisk ~ east!asterisk; east!c
Dc = asterisk ~ east!upward arrow

11]

Notes: (l) Since west does not end with asterisk, the
second "west?c" will not fail. (2) As an exercise, adapt
this process to deal sensibly with input which ends with
an odd number of asterisks.

3.3 D I S A S S E M B L E
Problem: to read cards from a cardfile and output to
process X the stream of characters they contain. An extra
space should be inserted at the end of each card.
Solution:

• [cardimage:(l. .80)character; cardfile?cardimage
i:integer; i ~ 1;
• [i _< 80 ~ X!cardimage(i); i .~ i + 1]
X!space

]

Notes: (1) "(1..80)character" declares an array of 80
characters, with subscripts ranging between 1 and 80. (2)
The repetitive command terminates when the cardfile
process terminates.

3.4 A S S E M B L E
Problem: To read a stream of characters from process X
and print them in lines of 125 characters on a lineprinter.
The last line should be completed with spaces if neces-
sary.

Communica t ions August 1978
o f Volume 21
the A C M N u m b e r 8

Solution:

l ineiraage:(1.. 125)character;
/ : integer; i ~ 1;
• [c:character; X?c

l i ne image(0 ~ c;
[i~_ 124--~ i := i + I

Ui = 125 ~ l inepr in ter ! l ine image; i ~ 1

l 1;
[i = ! ~ sk ip

0i > 1 ~ *[i _< 125 ~ l i n e i m a g e (0 ~ space; i ~ i + ll;
l inepr in te r ! l ine image

1

Note: (I) When X terminates, so will the first repetitive
command of this process. The last line will then be
printed, if it has any characters.

3.5 Reformat
Problem: Read a sequence of cards of 80 characters each,
and print the characters on a linepfinter at 125 characters
per line. Every card should be followed by an extra
space, and the last line should be completed with spaces
if necessary.
Solution:

[west::DISASSEMBLEI IX::COPYIleast=ASSEMBLE]

Notes: (1) The capitalized names stand for program text
defmed in previous sections. (2) The parallel command
is designed to terminate after the cardfile has terminated.
(3) This elementary problem is difficult to solve elegantly
without coroutines.

3.6 Conway's Problem [4]
Problem: Adapt the above program to replace every pair
of consecutive asterisks by an upward arrow.
Solution:

[wes t=DISASSEMBLE[IX=SQUASH[leas t=ASSEMBLE]

... ; subr?(results). Any commands between these two will
be executed concurrently with the subroutine.

A multiple-entry subroutine, acting as a representa-
tion for data [11], will also contain a repetitive command
which represents each entry by an alternative input to a
structured target with the entry name as constructor. For
example,

• [X?ent ry l (va lue pa rams) ~ ...

I]X?entry2(value pa rams) --~ ...

1

The calling process X will determine which of the alter-
natives is activated on each repetition. When X termi-
nates, so does this repetitive command. A similar tech-
nique in the user program can achieve the effect of
multiple exits.

A recursive subroutine can be simulated by an array
of processes, one for each level of recursion. The user
process is level zero. Each activation communicates its
parameters and results with its predecessor and calls its
successor if necessary:

[recsub(0) : :USERllrecsub(i : l . . rec l imit) : :RECSUB].

The user will call the first element of

recsub: recsub(l) ! (a rguments) ; ... ; recsub(l)?(resul ts) ; .

The imposition of a fixed upper bound on recursion
depth is necessitated by the "static" design of the lan-
guage.

This clumsy simulation of recursion would be even
more clumsy for a mutually recursive algorithm. It would
not be recommended for conventional programming; it
may be more suitable for an array of microprocessors
for which the fixed upper bound is also realistic.

In this section, we assume each subroutine is used
only by a single user process (which may, of course, itself
contain parallel commands).

4. Subroutines and Data Representat ions

A conventional nonrecursive subroutine can be read-
ily implemented as a coroutine, provided that (1) its
parameters are called "by value" and "by result," and
(2) it is disjoint from its calling program. Like a Fortran
subroutine, a coroutine may retain the values of local
variables (own variables, in Algol terms) and it may use
input commands to achieve the effect of "multiple entry
points" in a safer way than PL/I. Thus a coroutine can
be used like a SIMULA class instance as a concrete rep-
resentation for abstract data.

A coroutine acting as a subroutine is a process oper-
ating concurrently with its user process in a parallel
command: [subr::SUBROUTINEI[X::uSER]. The SUBROU-
TINE will contain (or consist of) a repetitive command:
*[X?(value params) ~ ... ; X!(result params)], where ...
computes the results from the values input. The subrou-
tine will terminate when its user does. The USER will call
the subroutine by a pair of commands: subr!(arguments);

671

4.1 Function: Division With Remainder
Problem: Construct a process to represent a function-
type subroutine, which accepts a positive dividend and
divisor, and returns their integer quotient and remainder.
Efficiency is of no concern.
Solution:

[DIV :: ,[x,y:integer; X?(x,y) --~
quot , rem: in teger ;quot m 0; rein ~ x;
• (rein _> y ~ rem ~ rem - y; quo t ~ quo t + 1];

X!(quot , rem)

1
[IX=USER
1

4.2 Recursion: Factorial
Problem: Compute a factorial by the recursive method,
to a given limit.
Solution:

[fac(i: 1..limit)::
• [n:mteger;fac(i - t)?n

[n = 0 ~ fac(i -- 1)!1

C o m m u n i c a t i o n s Augus t 1978
of Vo lume 21
the A C M N u m b e r 8

fin > 0 - ~ fac (i + l) ! n - 1;
r :kn tege r ; f ac (i + l) ? r ; f ac (i - i) ! (n • r)

II
I l f a c (O) : :USER
]

Note: This unrealistic example introduces the technique
of the "iterative array" which will be used to a better
effect: in later examples.

4.3 Data Representation: Small Set of Integers [11]
Problem: To represent a set of not more than 100 integers
as a process, S, which accepts two kinds of instruction
from its calling process X: (1) S!insert(n), insert the
integer n in the set, and (2) S!has(n); ... ; S?b, b is set true
if n is in the set, and false otherwise. The initial value of
the set is empty.

Solution:

S::
c o n t e n t : (0 . . 9 9) i n t e g e r ; s i ze : in t ege r ; s ize .--- 0;

• [n : i n t e g e r ; X ? h a s (n) --* S E A R C H ; X ! (i < s ize)

f in : in teger ; X ? i n s e r t (n) --* S E A R C H ;
[i < s ize --* s k i p
fii = size; s i ze < 100 --~

c o n t e n t (s ize) .---- n; s i ze .--'-- s ize + l

] l

where SEARCH is an abbreviation for:

/ : in teger ; i .--- 0;

• [i < size; c o n t e n t (0 # n -- , i .--- i + l]

Notes: (1) The alternative command with guard "size <
100" will fail if an attempt is made to insert more than
100 elements. (2) The activity of insertion will in general
take place concurrently with the calling process. How-
ever, any subsequent instruction to S will be delayed
until the previous insertion is complete.

4.4 Scanning a Set
Problem: Extend the solution to 4.3 by providing a fast
method for scanning all members of the set without
changing the value of the set. The user program will
contain a repetitive command of the form:

S!scan(); m o r e : b o o l e a n ; m o r e .--- t rue ;

• [m o r e ; x : i n t e g e r ; S ? n e x t (x) -- , ... d e a l w i t h x
f imore; S ? n o n e l e f i () - - , m o r e .--- f a l se

l

where S!scan() sets the representation into a scanning
mode. The repetitive command serves as a for statement,
inputting the successive members of x from the set and
inspecting them until finally the representation sends a
signal that there are no members left. The body of the
repetitive command is no t permitted to communicate
with S in any way.

Solution: Add a third guarded command to the outer
repetitive command of S:

... f iX?scan () ~ / : i n t e g e r ; i ~ 0;
• [i < s ize --~ X ! n e x t (c o n t e n t (0) ; i .--- i + l];
X ! n o n e l e f t ()

6 7 2

4.5 Recursive Data Representation: Small Set of
Integers
Problem: Same as above, but a.n array of processes is to
be used to achieve a high degree of parallelism. Each
process should contain at most one number. When it
contains no number, it should answer "false" to all
inquiries about membership. On the first insertion, it
changes to a second phase of behavior, in which it deals
with instructions from its predecessor, passing some of
them on to its successor. The calling process will be
named S(0). For efficiency, the set should be sorted, i.e.
the ith process should contain the / th largest number.

Solution:
S(i: I.. 100)::

• [n : in teger ; S (i - l) ? h a s (n) ~ S(0) ! fa l se

f in : in teger ; S (i - l) ? i n s e r t (n) --~

, I r a : i n t e g e r ; S(i - 1)?has (m) ---*
[m _< n ~ S (0) ! (m = n)

fire > n ---* S (i + l) ! h a s (m)

1
f i re : in teger ; S(i - I) ? i n s e r t (m) --->

[m < n --* S (i + l) ! i n se r t (n) ; n ~ m

fire = n ~ s k i p
fire > n --~ S (i + l) ! i n s e r t (m)

I I I

Notes: (1) The user process S(0) inquires whether n is a
member by the commands S(l)!has(n); ... ; [(i: l.. 100)S(0?
b --> skip]. The appropriate process will respond to the
input command by the output command in line 2 or line
5. This trick avoids passing the answer back "up the
chain." (2) Many insertion operations can proceed in
parallel, yet any subsequent "has" operation will be
performed correctly. (3) All repetitive commands and all
processes of the array will terminate after the user process
S(0) terminates.

4.6 Multiple Exits: Remove the Least Member
Exercise: Extend the above solution to respond to a
command to yield the least member of the set and to
remove it from the set. The user program will invoke the
facility by a pair of commands:

S(1) ! leas t (); [x : i n t e g e r ; S (l) ? x --* ... d e a l w i t h x ...
f i S (l) ? n o n e l e f t () ---> ...

1

or, if he wishes to scan and empty the set, he may write:

S (l) ! l e a s t () ; m o r e : b o o l e a n ; m o r e .'= t rue ;
• [more ; x : i n t e g e r ; S (l) ? x - - , ... d e a l w i t h x ... ; S (l) ! l e a s t ()
f imore; S (l) ? n o n e l e f i () ~ m o r e .--- f a l se

1

Hint: Introduce a Boolean variable, b, initialized to true,
and prefu¢ this to all the guards of the inner loop. After
responding to a !least() command from its predecessor,
each process returns its contained value n, asks its suc-
cessor for its least, and stores the response in n. But if the
successor returns "noneleft()," b is set false and the
inner loop terminates. The process therefore returns to
its initial state (solution due to David Gries).

C o m m u n i c a t i o n s A u g u s t 1978
o f V o l u m e 21
t h e A C M N u m b e r 8

5. Monitors and Scheduling

This section shows how a monitor can be regarded as
a single process which communicates with more than
one user process. However, each user process must have
a different name (e.g. producer, consumer) or a different
subscript (e.g. X(0) and each communication with a user
must identify its source or destination uniquely.

Consequently, when a monitor is prepared to com-
municate with any of its user processes (i.e. whichever of
them calls first) it will use a guarded command with a
range. For example: .[(i:1.. 100)X(0?(value parameters)
--~ ... ; X(0!(results)]. Here, the bound variable i is used
to send the results back to the calling process. If the
monitor is not prepared to accept input from some
particular user (e.g. X(j)) on a given occasion, the input
command may be preceded by a Boolean guard. For
example, two successive inputs from the same process
are inhibited by j = 0; *[(i: 1.. 100)i # j; X(0?(values) --,
... ; j .--- i]. Any attempted outpui from X(j) will be
delayed until a subsequent iteration, after the output of
some other process X(i) has been accepted and dealt
with.

Similarly, conditions can be used to delay acceptance
of inputs which would violate scheduling constraints--
postponing them until some later occasion when some
other process has brought the monitor into a state in
which the input can validly be accepted. This technique
is similar to a conditional critical region [10] and it
obviates the need for special synchronizing variables
such as events, queues, or conditions. However, the
absence of these special facilities certainly makes it more
difficult or less efficient to solve problems involving
priorities--for example, the scheduling of head move-
ment on a disk.

However, after the producer has produced its next por-
tion, the consumer's request can be granted on the next
iteration. (3) Similar remarks apply to the producer,
when in -- out + 10. (4) X is designed to terminate when
out = in and the producer has terminated.

5.2 Integer Semaphore
Problem: To implement an integer semaphore, S, shared
among an array X(i:I..100) of client processes. Each
process may increment the semaphore by S!V() or
decrement it by S!P(), but the latter command must be
delayed if the value of the semaphore is not positive.
Solution:
S::val:integer; val .--- 0;

*[(i:I. .100)X(0?V () ~ val .--- val + 1
II(i:l..100)val > 0; X(0?P () --, val ~ val - 1
]

Notes: (1) In this process, no use is made of knowledge
of the subscript i of the calling process. (2) The sema-
phore terminates only when all hundred processes of the
process array X have terminated.

5.3 Dining Philosophers (Problem due to E.W. Dijkstra)
Problem: Five philosophers spend their lives thinking
and eating. The philosophers share a common dining
room where there is a circular table surrounded by five
chairs, each belonging to one philosopher. In the center
of the table there is a large bowl of spaghetti, and the
table is laid with five forks (see Figure 1). On feeling
hungry, a philosopher enters the dining room, sits in his
own chair, and picks up the fork on the left of his place.
Unfortunately, the spaghetti is so tangled that he needs
to pick up and use the fork on his right as well. When he
has finished, he puts down both forks, and leaves the
room. The room should keep a count of the number of
philosophers in it.

5.1 Bounded Buffer
Problem: Construct a buffering process X to smooth
variations in the speed of output of portions by a pro-
ducer process and input by a consumer process. The
consumer contains pairs of commands X!more();
X?p, and the producer contains commands of the form
X!p. The buffer should contain up to ten portions.
Solution:

X::
buffer:(0..9) portion;
in,out:integer; in .--- 0; out .--- 0;
comment 0 <_ out _< in _< out + 10;

[in < out + 10; producer?buffer(in mod 10) -- in .--- in + 1
[lout < in; consumer?more() --~ consumer!buffer(out rood 10);

out .--- out + 1
]

Notes: (1) When out < in < out + 10, the selection of
the alternative in the repetitive command will depend on
whether the producer produces before the consumer
consumes, or vice versa. (2) When out -- in, the buffer is
empty and the second alternative cannot be selected even
if the consumer is ready with its command X!more() .

Fig. 1.

(2

Solution: The behavior of the ith philosopher may be
described as follows:

PHIL = *[... dur ing ith lifetime ... ---,
T H I N K ;
room!enter();
fork(0!pickup(); f o r k ((/ + 1) rood 5)!pickup();
EAT;
fork(i)!putdown(); f o r k ((/ + 1) mod 5)!putdown();
room!exit()
]

673 Communica t ions August 1978
o f Volume 21
the A C M N u m b e r 8

The fate of the ith fork is to be picked up and put down
by a philosopher sitting on either side of it

F O R K =
[phil(0?pickup()-- phi l (0?putdown()
0phil((i - 1)rood 5)?pickup() --* p h i l ((/ - l) raod 5)?putdown()

1

The story of the room may be simply told:

R O O M = occupancy:integer; occupancy .--- 0;
,[(i :0. .4)phil(0?enter () --* occupancy .--- occupancy + l
11(i:0..4)phil(0?exit () --~ occupancy .--- occupancy - l
]

All these components operate in parallel:

[room: :ROOM I [fork(i:0..4)::FORK I Iphil(i:0..4)::PHIL].

Notes: (1) The solution given above does not prevent all
five philosophers from entering the room, each picking
up his left fork, and starving to death because he cannot
pick up his right fork. (2) Exercise: Adapt the above
program to avert this sad possibility. Hint: Prevent more
than four philosophers from entering the room. (Solution
due to E. W. Dijkstra).

6. M i s c e l l a n e o u s

This section contains further examples of the use of
communicating sequential processes for the solution of
some less familiar problems; a parallel version of the
sieve of Eratosthenes, and the design of an iterative
array. The proposed solutions are even more speculative
than those of the previous sections, and in the second
example, even the question of termination is ignored.

6.1 Prime Numbers: T h e S ieve o f E r a t o s t h e n e s [14]
Problem: To print in ascending order all primes less than
10000. Use an array of processes, SIEVE, in which each
process inputs a prime from its predecessor and prints it.
The process then inputs an ascending stream of numbers
from its predecessor and passes them on to its successor,
suppressing any that are multiples of the original prime.
Solution:

[SIEVE(i: 1 . . 100)::
p,rap:integer;

S I E V E (i - l)?p;
print!p;
rap .--- p; comment rap is a mult iple o f p;

,[re:integer; S I E V E (/ - l)?m ---*
*[m > mp ~ mp .--'- m p + p];
[m = rap --* skip
nra < rap --* SIEVE(i + l)!ra

]]
HSIEVE(0)::print!2; n:integer; n .--- 3;

* I n < 10000--* SIEVE(I)!n; n .--- n + 2]
IISIEVE(101)::*[n:integer;SIEVE(100)?n --~ print!n]
Hprint::,[(i:0.. 101) n:integer; SIEVE(0?n --> ...]

1

Note: (1) This beautiful solution was contributed by
David Giles. (2) It is algorithmically similar to the
program developed in [7, pp. 27-32].

674

6.2 An Iterative Array: Matrix Mult ip l i ca t ion
Problem: A square matrix A of order 3 is given. Three
streams are to be input, each stream representing a
column of an array IN. Three streams are to be output,
each representing a column of" the product matrix IN ×
A. After an initial delay, the results are to be produced
at the same rate as the input is consumed. Consequently,
a high degree of parallelism is required. The solution
should take the form shown in Figure 2. Each of the nine
nonborder nodes inputs a vector component from the
west and a partial sum from the north. Each node outputs
the vector component to its east, and an updated partial
sum to the south. The input data is produced by the west
border nodes, and the desired results are consumed by
south border nodes. The north border is a constant
source of zeros and the east border is just a sink. No
provision need be made for termination nor for changing
the values of the array A.

Fig. 2.

0 0 0

~111 ~12x A13x

A11x*Azly A12x*A22y A13x*A23y

A11x*A21y,A~ AlzX.A22Y.A3~ AoX.A23y.A~z

S

Solution: There are twenty-one nodes, in five groups,
comprising the central square and the four borders:

[M(i: 1 ..3,0)::WEST
I IM(0d: I..3)::NORTH
I IM(i: I..3,4)::EAST
I IM(4j:I..3)::SOUTH
I IM(i:I..3d:I..3)::CENTER
1

The WEST and SOUTH borders are processes of the user
program; the remaining processes are:

N O R T H = . [t rue --* M(Id)!0]
EAST = .Ix:real; M(i,3)?x---> skip]
C E N T E R = .[x:real; M(id - l)?x --*

M (i , j + l)!x; sum:real;
M(i - l , j)?sum; M(i + l d) ! (A (i , j) * x + sum)

]

7. D i s c u s s i o n

A design for a programming language must neces-
sarily involve a number of decisions which seem to be

Communica t ions August 1978
of Volume 2 I
the A C M N u m b e r 8

fairly arbitrary. The discussion of this section is intended
to explain some of the underlying motivation and to
mention some unresolved questions.

7.1 Notations
I have chosen single-character notations (e.g. !,?) to

express the primitive concepts, rather than the more
traditional boldface or underlined English words. As a
result, the examples have an APL-like brevity, which
some readers fred distasteful. My excuse is that (in
contrast to APL) there are only a very few primitive
concepts and that it is standard practice of mathematics
(and also good coding practice) to denote common prim-
itive concepts by brief notations (e.g. +,x). When read
aloud, these are replaced by words (e.g. plus, times).

Some readers have suggested the use of assignment
notation for input and output:

<target variable> := <source>
<destination> .--- <expression>

I fend this suggestion misleading: it is better to regard
input and output as distinct primitives, justifying distinct
notations.

I have used the same pair of brackets ([...]) to bracket
all program structures, instead of the more familiar
variety of brackets (if..fi, begin..end, case...esac, etc.). In
this I follow normal mathematical practice, but I must
also confess to a distaste for the pronunciation of words
like fi, od, or esac.

I am dissatisfied with the fact that my notation gives
the same syntax for a structured expression and a sub-
scripted variable. Perhaps tags should be distinguished
from other identifiers by a special symbol (say #).

I was tempted to introduce an abbreviation for com-
bined declaration and input, e.g. X?(n:integer) for
n:integer; X?n.

7.2 Expficit Naming
My design insists that every input or output com-

mand must name its source or destination explicitly. This
makes it inconvenient to write a library of processes
which can be included in subsequent programs, inde-
pendent of the process names used in that program. A
partial solution to this problem is to allow one process
(the main process) of a parallel command to have an
empty label, and to allow the other processes in the
command to use the empty process name as source or
destination of input or output.

For construction of large programs, some more gen-
eral technique will also be necessary. This should at least
permit substitution of program text for names defined
elsewhere--a technique which has been used informally
throughout this paper. The Cobol coPY verb also permits
a substitution for formal parameters within the copied
text. But whatever facility is introduced, I would rec-
ommend the following principle: Every program, after
assembly with its library routines, should be printable as
a text expressed wholly in the language, and it is this

675

printed text which should describe the execution of the
program, independent of which parts were drawn from
a library.

Since I did not intend to design a complete language,
I have ignored the problem of libraries in order to
concentrate on the essential semantic concepts of the
program which is actually executed.

7.3 Port Names
An alternative to explicit naming of source and des-

tination would be to name a port through which com-
munication is to take place. The port names would be
local to the processes, and the manner in which pairs of
ports are to be connected by channels could be declared
in the head of a parallel command.

This is an attractive alternative which could be de-
signed to introduce a useful degree of syntactically check-
able redundancy. But it is semantically equivalent to the
present proposal, provided that each port is connected to
exactly one other port in another process. In this case
each channel can be identified with a tag, together with
the name of the process at the other end. Since I wish to
concentrate on semantics, I preferred in this paper to use
the simplest and most direct notation, and to avoid
raising questions about the possibility of connecting more
than two ports by a single channel.

7.4 Automatic Buffering
As an alternative to synchronization of input and

output, it is often proposed that an outputting process
should be allowed to proceed even when the inputting
process is not yet ready to accept the output. An imple-
mentation would be expected automatically to interpose
a chain of buffers to hold output messages that have not
yet been input.

I have deliberately rejected this alternative, for two
reasons: (1) It is less realistic to implement in multiple
disjoint processors, and (2) when buffering is required
on a particular channel, it can readily be specified using
the given primitives. Of course, it could be argued
equally well that synchronization can be specified when
required by using a pair of buffered input and output
commands.

7.5 Unbounded Process Activation
The notation for an array of processes permits the

same program text (like an Algol recursive procedure) to
have many simultaneous "activations"; however, the
exact number must be specified in advance. In a conven-
tional single-processor implementation, this can lead to
inconvenience and wastefulness, similar to the fixed-
length array of Fortran. It would therefore be attractive
to allow a process array with no a priori bound on the
number of elements; and to specify that the exact number
of elements required for a particular execution of the
program should be determined dynamically, like the
maximum depth of recursion of an Algol procedure or
the number of iterations of a repetitive command.

Communications August 1978
of Volume 21
the ACM Number 8

However, it is a good principle that every actual run
of a program with unbounded arrays should be identical
to the run of some program with all its arrays bounded
in advance. Thus the unbounded program should be
defined as the "limit" (in some sense) of a series of
bounded programs with increasing bounds. I have cho-
sen to concentrate on the semantics of the bounded
case--which is necessary anyway and which is more
realistic for implementation on multiple microprocessors.

7.6 Fairness
Consider the parallel command:

[X::Y!stop()ll Y::continue:boolean; continue .--- true;
.[continue; X?stop() ~ continue .--- false

Ilcontinue ---, n .--- n + 1

1
1.

If the implementation always prefers the second alter-
native in the repetitive command of Y, it is said to be
unfair, because although the output command in X could
have been executed on an infinite number of occasions,
it is in fact always passed over.

The question arises: Should a programming language
definition specify that an implementation must be fair?.
Here, I am fairly sure that the answer is NO. Otherwise,
the implementation would be obliged to successfully
complete the example program shown above, in spite of
the fact that its nondeterminism is unbounded. I would
therefore suggest that it is the programmer's responsibil-
ity to prove that his program terminates correctly--with-
out relying on the assumption of fairness in the imple-
mentation. Thus the program shown above is incorrect,
since its termination cannot be proved.

Nevertheless, I suggest that an efficient implementa-
tion should try to be reasonably fair and should ensure
that an output command is not delayed unreasonably
often after it first becomes executable. But a proof of
correctness must not rely on this property of an efficient
implementation. Consider the following analogy with a
sequential program: An efficient implementation of an
alternative command will tend to favor the alternative
which can be most efficiently executed, but the program-
mer must ensure that the logical correctness of his pro-
gram does not depend on this property of his implemen-
tation.

This method of avoiding the problem of fairness does
not apply to programs such as operating systems which
are intended to run forever because in this case termi-
nation proofs are not relevant. But I wonder whether it
is ever advisable to write or to execute such programs.
Even an operating system should be designed to bring
itself to an orderly conclusion reasonably soon after it
inputs a message instructing it to do so. Otherwise, the
only way to stop it is to "crash" it.

7.7 Functional Coroutines
It is interesting to compare the processes described

here with those proposed in [12]; the differences are most

676

striking. There, coroutines are strictly deterministic: No
choice is given between alternative sources of input. The
output commands are automatically buffered to any
required degree. The output of one process can be au-
tomatically fanned out to any :number of processes (in-
cluding itself!) which can consume it at differing rates.
Finally, the processes there are designed to run forever,
whereas my proposed parallel command is normally
intended to terminate. The design in [12] is based on an
elegant theory which permits proof of the properties of
programs. These differences are not accidental--they
seem to be natural consequences of the difference be-
tween the more abstract applicative (or functional) ap-
proach to programming and the more machine-oriented
imperative (or procedural) approach, which is taken by
communicating sequential processes.

7.8 Output Guards
Since input commands may appear in guards, it

seems more symmetric to permit output commands as
well. This would allow an obvious and useful simplifi-
cation in some of the example programs, for example, in
the bounded buffer (5.1). Perhaps a more convincing
reason would be to ensure that the externally visible
effect and behavior of every parallel command can be
modeled by some sequential command. In order to
model the parallel command

Z :: [X!211Y!3 l

we need to be able to write the sequential alternative
command:

Z :: [X!2 ~ Y!31I Y!3 ~ X!2]

Note that this cannot be done by the command

Z :: [true ~ X!2; Y!31]true ~ Y!3; X!2]

which can fail if the process Z happens to choose the
first alternative, but the processes Y and X are synchro-
nized with each other in such a way that Y must input
from Z before X does, e.g.

Y :: Z?y; X!go()
IIX:: Y?go(); Z?x

7.9 Restriction: Repetitive Command With Input Guard
In proposing an unfamiliar programming language

feature, it seems wiser at first to specify a highly restric-
tive version rather than to propose extensions--
especially when the language feature claims to be prim-
itive. For example, it is clear that the multidimensional
process array is not primitive, since it can readily be
constructed in a language which permits only single-
dimensional arrays. But I have a rather more serious
misgiving about the repetitive command with input
guards.

The automatic termination of a repetitive command
on termination of the sources of all its input guards is an
extremely powerful and convenient feature but it also
involves some subtlety of specification to ensure that it

Communica t ions August 1978
of Volume 21
the A C M N u m b e r 8

is implementable; and it is certainly not primitive, since
the required effect can be achieved (with considerable
inconvenience) by explicit exchange of "end()" signals.
For example, the subroutine DIV(4. l) could be rewritten:

[DIV :: continue:boolean; continue .---- true;
*[continue; X?endO--, continue .--- false
[Icontinue; x,y:integer; X?(x,y) ---> ... ; X!(quot,rem)

[IX :: USER PROG; DIV!endO
]

Other examples would be even more inconvenient.
But the dangers of convenient facilities are notorious.

For example, the repetitive commands with input guards
may tempt the programmer to write them without mak-
ing adequate plans for their termination; and if it turns
out that the automatic termination is unsatisfactory,
reprogramming for explicit termination will involve se-
vere changes, affecting even the interfaces between the
processes.

8. C o n c l u s i o n

This paper has suggested that input, output, and
concurrency should be regarded as primitives of pro-
gramming, which underlie many familiar and less famil-
iar programming concepts. However, it would be unjus-
tified to conclude that these primitives can wholly replace
the other concepts in a programming language. Where
a more elaborate construction (such as a procedure or a
monitor) is frequently useful, has properties which are
more simply provable, and can also be implemented
more efficiently than the general case, there is a strong
reason for including in a programming language a special
notation for that construction. The fact that the construc-
tion can be defined in terms of simpler underlying prim-
itives is a useful guarantee that its inclusion is logically
consistent with the remainder of the language.

Acknowledgments. The research reported in this pa-
per has been encouraged and supported by a Senior
Fellowship of the Science Research Council of Great
Britain. The technical inspiration was due to Edsger W.
Dijkstra [9], and the paper has been improved in pres-
entation and content by valuable and painstaking advice
from D. Gries, D. Q. M. Fay, Edsger W. Dijkstra, N.
Wirth, Robert Milne, M. K. Harper, and its referees.
The role of IFIP W.G.2.3 as a forum for presentation
and discussion is acknowledged with pleasure and grat-
itude.

Received March 1977; revised August 1977

References
1. Atkinson, R., and Hewitt, C. Synchronisation in actor systems.
Working Paper 83, M.I.T., Cambridge, Mass., Nov. 1976.
2. Brinch Hansen, P. The programming language Concurrent
Pascal. IEEE Trans. Software Eng. 1, 2 (June 1975), 199-207.
3. Campbell, R.H., and Habermann, A.N. The specification of
process synchronisation by path expressions. Lecture Notes in
Computer Science 16, Springer, 1974, pp. 89-102.
4. Conway, M.E. Design of a separable transition-diagram
compiler. Comm. ACM 6, 7 (July 1963), 396-408.

677

5. Dahl, O-J., et al. SIMULA 67, common base language.
Norwegian Computing Centre, Forskningveien, Oslo, 1967.
6. Dijkstra, E.W. Co-operating sequential processes. In
Programming Languages, F. Genuys, Ed., Academic Press, New
York, 1968, pp. 43-112.
7. Dijkstra, E.W. Notes on structured programming. In Structured
Programming, Academic Press, New York 1972, pp. 1-82.
8. Dijkstra, E.W. Guarded commands, nondeterminacy, and formal
derivation of programs. Comm. A CM 18, 8 (Aug. 1975), 453-457.
9. Dijkstra, E.W. Verbal communication, Marktoberdorf, Aug.
1975.
10. Hoare, C.A.R. Towards a theory of parallel programming. In
Operating Systems Techniques, Academic Press, New York, 1972, pp.
61-71.
11. Hoare, C.A.R. Proof of correctness of data representations..4cta
Informatica 1, 4 (1972), 271-281.
12. Kahn, G. The semantics of a simple language for parallel
programming. In Proc. IFIP Congress 74, North Holland, 1974.
13. Liskov, B.H. A note on CLU. Computation Structures Group
Memo. 112, M.I.T., Cambridge, Mass, 1974.
14. Mcllroy, M.D. Coroutines. Bell Laboratories, Murray Hill, N.J.,
1968.
15. Naur, P., Ed. Report on the algorithmic language ALGOL 60.
Comm. ACM 3, 5 (May 1960), 299-314.
16. Reynolds, J.C. COGENT. ANL-7022, Argonne Nat. Lab.,
Argonne, II1., 1965.
17. Thompson, K. The UNIX command language. In Structured
Programming, Infotech, Nicholson House, Maidenhead. England,
1976, pp. 375-384.
18. van Wijngaarden, A. Ed. Report on the algorithmic language
ALGOL 68. Numer. Math. 14 (1969), 79-218.
19. Wulf, W.A., London, R.L., and Shaw, M. Abstraction and
verification in ALPHARD. Dept. of Comptr. Sci., Carnegie-MeUon
U., Pittsburgh, Pa., June 1976.
20. Wirth, N. The programming language PASCAL. Acta
Informatica 1, 1 (1971), 35-63.

Communications August 1978
of Volume 21
the ACM Number 8

