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1. Introduction 

Among the primitive concepts of computer program- 
ming, and of the high level languages in which programs 
are expressed, the action of assignment is familiar and 
well understood. In fact, any change of the internal state 
of a machine executing a program can be modeled as an 
assignment of a new value to some variable part of that 
machine. However, the operations of input and output, 
which affect the external environment of a machine, are 
not nearly so well understood. They are often added to 
a programming language only as an afterthought. 

Among the structuring methods for computer pro- 
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grams, three basic constructs have received widespread 
recognition and use: A repetitive construct (e.g. the while 
loop), an alternative construct (e.g. the conditional 
if..then..else), and normal sequential program composi- 
tion (often denoted by a semicolon). Less agreement has 
been reached about the design of other important pro- 
gram structures, and many suggestions have been made: 
Subroutines (Fortran), procedures (Algol 60 [15]), entries 
(PL/I), coroutines (UNIX [171), classes (SIMULA 67 [5]), 
processes and monitors (Concurrent Pascal [2]), clusters 
(CLU [13]), forms (ALPHARD [19]), actors (Hewitt [1]). 

The traditional stored program digital computer has 
been designed primarily for deterministic execution of a 
single sequential program. Where the desire for greater 
speed has led to the introduction of parallelism, every 
attempt has been made to disguise this fact from the 
programmer, either by hardware itself (as in the multiple 
function units of the CDC 6600) or by the software (as 
in an I /O control package, or a multiprogrammed op- 
erating system). However, developments of processor 
technology suggest that a multiprocessor machine, con- 
structed from a number of similar self-contained proc- 
essors (each with its own store), may become more 
powerful, capacious, reliable, and economical than a 
machine which is disguised as a monoprocessor. 

In order to use such a machine effectively on a single 
task, the component processors must be able to com- 
municate and to synchronize with each other. Many 
methods of achieving this have been proposed. A widely 
adopted method of communication is by inspection and 
updating of a common store (as in Algol 68 [18], PL/I, 
and many machine codes). However, this can create 
severe problems in the construction of correct programs 
and it may lead to expense (e.g. crossbar switches) and 
unreliability (e.g. glitches) in some technologies of hard- 
ware implementation. A greater variety of methods has 
been proposed for synchronization: semaphores [6], 
events (PL/I), conditional critical regions [10], monitors 
and queues (Concurrent Pascal [2]), and path expressions 
[3]. Most of these are demonstrably adequate for their 
purpose, but there is no widely recognized criterion for 
choosing between them. 

This paper makes an ambitious attempt to find a 
single simple solution to all these problems. The essential 
proposals are: 
(1) Dijkstra's guarded commands [8] are adopted (with 
a slight change of notation) as sequential control struc- 
tures, and as the sole means of introducing and control- 
ling nondeterminism. 
(2) A parallel command, based on Dijkstra's parbegin 
[6], specifies concurrent execution of  its constituent se- 
quential commands (processes). All the processes start 
simultaneously, and the parallel command ends only 
when they are all finished. They may not communicate 
with each other by updating global variables. 
(3) Simple forms of input and output command are 
introduced. They are used for communication between 
concurrent processes. 
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(4) Such communication occurs when one process 
names another as destination for output a n d  the second 
process names the first as source for input. In this case, 
the value to be output is copied from the first process to 
the second. There is no automatic buffeting: In general, 
an input or output command is delayed until the other 
process is ready with the corresponding output or input. 
Such delay is invisible to the delayed process. 
(5) Input commands may appear in guards. A guarded 
command with an input guard is selected for execution 
only if  and when the source named in the input com- 
mand is ready to execute the corresponding output com- 
mand. If  several input guards of a set of alternatives 
have ready destinations, only one is selected and the 
others have no  effect; but the choice between them is 
arbitrary. In an efficient implementation, an output com- 
mand which has been ready for a long time should be 
favored; but the defmition of a language cannot specify 
this since the relative speed of execution of the processes 
is undefmed. 
(6) A repetitive command may have input guards. If  all 
the sources named by them have terminated, then the 
repetitive command also terminates. 
(7) A simple pattern-matching feature, similar to that of 
[16], is used to discriminate the structure of an input 
message, and to access its components in a secure fash- 
ion. This feature is used to inhibit input of messages that 
do not match the specified pattern. 

The programs expressed in the proposed language 
are intended to be implementable.both by a conventional 
machine with a single main store, and by a fixed network 
of processors connected by input/output channels (al- 
though very different optimizations are appropriate in 
the different cases). It is consequently a rather static 
language: The text of a program determines a fixed 
upper bound on the number of processes operating 
concurrently; there is no recursion and no facility for 
process-valued variables. In other respects also, the lan- 
guage has been stripped to the barest minimum necessary 
for explanation of its more novel features. 

The concept of a communicating sequential process 
is shown in Sections 3-5 to provide a method of express- 
ing solutions to many simple programming exercises 
which have previously been employed to illustrate the 
use of various proposed programming language features. 
This suggests that the process may constitute a synthesis 
of a number of familiar and new programming ideas. 
The reader is invited to skip the examples which do not 
interest him. 

However, this paper also ignores many serious prob- 
lems. The most serious is that it fails to suggest any proof 
method to assist in the development and verification of 
correct programs. Secondly, it pays no attention to the 
problems of efficient implementation, which may be 
particularly serious on a traditional sequential computer. 
It is probable that a solution to these problems will 
require (1) imposition of restrictions in the use of the 
proposed features; (2) reintroduction of distinctive no- 

tations for the most common and useful special cases; 
(3) development of  automatic optimization techniques; 
and (4) the design of appropriate hardware. 

Thus the concepts and notations introduced in this 
paper (although described in the next section in the form 
of a programming language fragment) should not be 
regarded as suitable for use as a programming language, 
either for abstract or for concrete programming. They 
are at best only a partial solution to the problems tackled. 
Further discussion of these and other points will be 
found in Section 7. 

2. Concepts and Notations 

The style of the following description is borrowed 
from Algol 60 [15]. Types, declarations, and expressions 
have not been treated; in the examples, a Pascal-like 
notation [20] has usually been adopted. The curly braces 
{ } have been introduced into BNF to denote none or 
more repetitions of the enclosed material. (Sentences in 
parentheses refer to an implementation: they are not 
strictly part of a language defmition.) 

<command>  :.--- <simple command>l<structured command> 
<simple command> :.--- <null command>l<assignment  command> 

I<input command>l<output  command> 
<structured command> :.--- <alternative command> 

I<repetitive command>l<parallel  command> 
<null  command> :.--- skip 
<command list> :.--- {<declaration>; I<command>;} <command>  

A command specifies the behavior of a device exe- 
cuting the command. It may succeed or fail. Execution 
of a simple command, if successful, may have an effect 
on the internal state of the executing device (in the case 
of assignment), or on its external environment (in the 
case of output), or on both (in the case of input). Exe- 
cution of a structured command involves execution of  
some or all of its constituent commands, and if any of 
these fail, so does the structured command. (In this case, 
whenever possible, an implementation should provide 
some kind of comprehensible error diagnostic message.) 

A null command has no effect and never fails. 
A command list specifies sequential execution of its 

constituent commands in the order written. Each decla- 
ration introduces a fresh variable with a scope which 
extends from its declaration to the end of the command 
list. 

2.1 Parallel Commands 

<parallel command> :.--- [<process> {I I<process>} ] 
<process> :.--- <process label> <command list> 
<process label> :.--- <empty>l<ident i f ier> :: 

I<identifier>(<label subscript>{,<label subscript>}) :: 
<label subscript> :.--- <integer constant>l<range> 
<integer constant> :.--- <numera l>l<bound variable> 
<bound  variable> :.--- <identifier> 
<range> :.~ <bound variable>:<lower bound>. .<upper bound> 
<lower bound> :.~ <integer constant> 
<upper  bound> :.~ <integer constant> 

667 Communications August 1978 
of  Volume 21 
the ACM Number 8 



Each process of  a parallel command must be disjoint 
from every other process of  the command, in the sense 
that it does not mention any variable which occurs as a 
target variable (see Sections 2.2 and 2.3) in any other 
process. 

A process label without subscripts, or one whose label 
subscripts are all integer constants, serves as a name for 
the command list to which it is prefixed; its scope extends 
over the whole of the parallel command. A process 
whose label subscripts include one or more ranges stands 
for a series of  processes, each with the same label and 
command list, except that each has a different combi- 
nation of values substituted for the bound variables. 
These values range between the lower bound and the 
upper bound inclusive. For example, X(i:l..n) :: CL 
stands for 

X(l) :: CEll[X(2):: CL211...[IX(n) :: CL~ 

where each CLy is formed from CL by replacing every 
occurrence of the bound variable i by the numeral j .  
After all such expansions, each process label in a parallel 
command must occur only once and the processes must 
be well formed and disjoint. 

A parallel command specifies concurrent execution 
of its constituent processes. They all start simultaneously 
and the parallel command terminates successfully only 
if and when they have all successfully terminated. The 
relative speed with which they are executed is arbitrary. 
Examples: 
(1) [cardreader?cardimage[ [lineprinter!lineimage] 

Performs the two constituent commands in parallel, 
and terminates only when both operations are complete. 
The time taken may be as low as the longer of  the times 
taken by each constituent process, i.e. the sum of its 
computing, waiting, and transfer times. 

(2) [west :: DISASSEMBLEIlX :: SQUASH I [east :: ASSEMBLE] 

The three processes have the names "west," "X," and 
"east." The capitalized words stand for command lists 
which will be defined in later examples. 

(3) [room :: ROOM I Ifork(i:0..4) :: FORK I Iphil(i:0..4) :: PHIL] 

There are eleven processes. The behavior of "room" 
is specified by the command list ROOM. The behavior of 
the five processes fork(0), fork(l), fork(2), fork(3), 
fork(4), is specified by the command list FORK, within 
which the bound variable i indicates the identity of the 
particular fork. Similar remarks apply to the five proc- 
esses PHIL. 

2.2 Assignment Commands 

<assignment command> :.--- <target variable> := <expression> 
<expression> :.-= <simple expression>l<structured expression> 
<structured expression> :~  <constructor>(<expression list>) 
<constructor> :.--- <ident i f ier>l<empty> 
<expression list> :-- <empty>l<expression>{,<expression>} 
<target variable> :.--- <simple variable>l<structured target> 
<structured target> :.--- <constructor>(<target variable list>) 
<target variable list> : ~  <empty>[<target  variable> 

{,<target variable>} 
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An expression denotes a value which is computed by 
an executing device by application of its constituent 
operators to the specified operands. The value of an 
expression is undefined if any of these operations are 
undefined. The value denoted by a simple expression 
may be simple or structured. The value denoted by a 
structured expression is structured; its constructor is that 
of the expression, and its components are the list of 
values denoted by the constituent expressions of the 
expression list. 

An assignment command specifies evaluation of  its 
expression, and assignment of the denoted value to the 
target variable. A simple target variable may have as- 
signed to it a simple or a structured value. A structured 
target variable may have assigned to it a structured value, 
with the same constructor. The effect of such assignment 
is to assign to each constituent simpler variable of  the 
structured target the value of the corresponding compo- 
nent of the structured value. Consequently, the value 
denoted by the target variable, if evaluated after a suc- 
cessful assignment, is the same as the value denoted by 
the expression, as evaluated before the assignment. 

An assignment fails if the value of its expression is 
undefined, or if that value does not match the target 
variable, in the following sense: A simple target variable 
matches any value of its type. A structured target variable 
matches a structured value, provided that: (1) they have 
the same constructor, (2) the target variable list is the 
same length as the list of components of  the value, (3) 
each target variable of  the list matches the corresponding 
component of the value list. A structured value with no 
components is known as a "signal." 

Examples: 
(1) x . - - - x+  1 

(2) (x, y) - -  (y, x) 
(3) x .--- cons(left, right) 

(4) cons(left, right) .--- x 

(5) insert(n) ~ insert(2,x + 1) 
(6) c .--- PO 

(7 ) .P0  .--- c 

the value of  x after the assignment 
is the same as the value of  x + 1 
before. 

exchanges the values of  x and y. 
constructs a structured value and 

assigns it to x. 
fails if  x does not have the form 

cons(y, z); but if it does, then y is 
assigned to left, and z is assigned 
to right. 

equivalent to n .--- 2*x + l. 
assigns to c a "signal" with con- 

structor P, and no components. 
fails if the value of  c is not P0 ;  

otherwise has no effect. 
(8) insert(n) .--- has(n) fails, due to mismatch. 

Note: Successful execution of both (3) and (4) ensures 
the truth of the postcondition x = cons(left, right); but 
(3) does so by changing x and (4) does so by changing 
left and right. Example (4) will fail if there is no value of  
left and right which satisfies the postcondition. 

2.3 Inimt and Output Commands 

<input command> :.~ <source>?<target variable> 
<output command> :.--- <destination>!<expression> 
<source> :.~ <process name> 
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<destination> :.--- <process name> 
<process name> :.= <identifier>[<identifier>(<subscripts>) 
<subscripts> ::= <integer expression>{,<integer expression>} 

Input and output commands specify communication 
between two concurrently operating sequential processes. 
Such a process may be implemented in hardware as a 
special-purpose device (e.g. cardreader or lineprinter), or 
its behavior may be specified by one of  the constituent 
processes of a parallel command. Communication occurs 
between two processes of a parallel command whenever 
(1) an input command in one process specifies as its 
source the process name of the other process; (2) an 
output command in the other process specifies as its 
destination the process name of the first process; and (3) 
the target variable of the input command matches the 
value denoted by the expression of the output command. 
On these conditions, the input and output commands are 
said to correspond. Commands which correspond are 
executed simultaneously, and their combined effect is to 
assign the value of the expression of the output command 
to the target variable of the input command. 

An input command fails if its source is terminated. 
An output command fails if its destination is terminated 
or if its expression is undefined. 

(The requirement of synchronization of input and 
output commands means that an implementation will 
have to delay whichever of the two commands happens 
to be ready first. The delay is ended when the corre- 
sponding command in the other process is also ready, or 
when the other process terminates. In the latter case the 
first command fails. It is also possible that the delay will 
never be ended, for example, if a group of processes are 
attempting communication but none of their input and 
output commands correspond with each other. This form 
of failure is known as a deadlock.) 

Examples: 

(1) cardreader?cardimage 

(2) lineprinter!lineimage 

(3) X?(x, y) 

(4) DIV!(3.a + b, 13) 

from cardreader, read a card and 
assign its value (an array of char- 
acters) to the variable cardimage 

to lineprinter, send the value of 
lineimage for printing 

from process named X, input a pair 
of values and assign them to x 
andy  

to process DIV, output the two 
specified values. 

Note: If a process named DIV issues command (3), and a process 
named X issues command (4), these are executed simultaneously, 
and have the same effect as the assignment: ( x , y )  ~ (3*a + b, 13) 
( m x ~ 3 * a + b ; y ~  13). 

(5) console(0?c 

(6) console( . /-  I)!"A" 

(7) x(o?v( ) 

(8) sem!P( ) 

from the/ th  element of an array of 
consoles, input a value and assign 
it to c 

to the ( j  - l)th console, output 
character "A" 

from the/th of an array of processes 
X, input a signal V( ); refuse to 
input any other signal 

to sem output a signal P( ) 
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2.4 Alternative and Repetitive Commands 

<repetitive command> :.---,<alternative command> 
<alternative command> :-- [<guarded command> 

(13<gnarded command>} ] 
<guarded command> :~  <guard> ----, <command list> 

I(<range>{,<range>})<guard> --, <command list> 
<guard> :.--- <guard list>l<guard list>;<input command> 

I<input command> 
<guard list> :~  <guard element>(;<gnard element>} 

<guard element> :~  <boolean expression>l<declaration> 

A guarded command with one or more ranges stands 
for a series of  guarded commands, each with the same 
guard and command list, except that each has a different 
combination of values substituted for the bound varia- 
bles. The values range between the lower bound and 
upper bound inclusive. For example, (i:l..n)G --~ CL 
stands for 

G1 ~ CLI[IG2 --> CL2n...[IGn ~ CLn 

where each Gj --> CLj is formed from G --, CL by 
replacing every occurrence of the bound variable i by the 
numeral j .  

A guarded command is executed only if and when 
the execution of its guard does not fail. First its guard is 
executed and then its command list. A guard is executed 
by execution of its constituent elements from left to right. 
A Boolean expression is evaluated: If  it denotes false, the 
guard fails; but an expression that denotes true has no 
effect. A declaration introduces a fresh variable with a 
scope that extends from the declaration to the end of the 
guarded command. An input command at the end of a 
guard is executed only if and when a corresponding 
output command is executed. (An implementation may 
test whether a guard fails simply by trying to execute it, 
and discontinuing execution if and when it fails. This is 
valid because such a discontinued execution has no effect 
on the state of the executing device.) 

An alternative command specifies execution of ex- 
actly one of its constituent guarded commands. Conse- 
quently, if  all guards fail, the alternative command fails. 
Otherwise an arbitrary one with successfully executable 
guard is selected and executed. (An implementation 
should take advantage of its freedom of selection to 
ensure efficient execution and good response. For ex- 
ample, when input commands appear as guards, the 
command which corresponds to the earliest ready and 
matching output command should in general be pre- 
ferred; and certainly, no executable and ready output 
command should be passed over unreasonably often.) 

A repetitive command specifies as many iterations as 
possible of its constituent alternative command. Conse- 
quently, when all guards fail, the repetitive command 
terminates with no effect. Otherwise, the alternative com- 
mand is executed once and then the whole repetitive 
command is executed again. (Consider a repetitive com- 
mand when all its true guard lists end in an input guard. 
Such a command may have to be delayed until either (1) 
an output command corresponding to one of the input 
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guards becomes ready, or (2) all the sources named by 
the input guards have terminated. In case (2), the repet- 
itive command terminates. If neither event ever occurs, 
the process fails (in deadlock.) 
Examples:  

( l )  [x >_ y---~ m .--- xOy_> x--~ m ~ y] 

If  x _> y, assign x to m; i f y  >_ x assign y to m; if both 
x _> y and y >_ x, either assignment can be executed. 

(2) i .~ 0;*[i < size; content(/) # n ~ i .~ i + 1] 

The repetitive command scans the elements con- 
tent(i), for i = 0, 1 . . . . .  until either i >_ size, or a value 
equal to n is found. 

(3) ,[c:character; west?c ~ east!c] 

This reads all the characters output by west, and 
outputs them one by one to east. The repetition termi- 
nates when the process west terminates. 

(4) ,[(i:l. .10)continue(t); console(i)?c-: ,  X!(i, c); console(0!ack(); 
continue(i) := (c # sign off)] 

This command inputs repeatedly from any of  ten 
consoles, provided that the corresponding element of the 
Boolean array continue is true. The bound variable i 
identifies the originating console. Its value, together with 
the character just input, is output to X, and an acknowl- 
edgment signal is sent back to the originating console. If  
the character indicated "sign off," continue(i) is set false, 
to prevent further input from that console. The repetitive 
command terminates when all ten elements of continue 
are false. (An implementation should ensure that no 
console which is ready to provide input will be ignored 
unreasonably often.) 

(5) ,In:integer; X?insert(n) ---~ I N S E R T  
On:integer; X?has(n)  ~ SEARCH;  X!( i  < size) 
] 

(Here, and elsewhere, capitalized words INSERT and 
SEARCH stand as abbreviations for program text defined 
separately.) 

On each iteration this command accepts from X either 
(a) a request to "insert(n)," (followed by INSERT) or (b) 
a question "has(n)," to which it outputs an answer back 
to X. The choice between (a) and (b) is made by the next 
output command in X. The repetitive command termi- 
nates when X does. If  X sends a nonmatching message, 
deadlock will result. 

(6) *[X?V 0 ~ val := val + 1 
0val > 0; Y?PO --~ val := val - 1 

1 

On each iteration, accept either a V 0 signal from X 
and increment val, or a PO signal from Y, and decrement 
val. But the second alternative cannot be selected unless 
val is positive (after which val will remain invariantly 
nonnegative). (When val > 0, the choice depends on the 
relative speeds of  X and Y, and is not determined.) The 
repetitive command will terminate when both X and Y 
are terminated, or when X is terminated and val <_ 0. 
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3. Coroutines 

In parallel programming coroutines appear as a more 
fundamental program structure than subroutines, which 
can be regarded as a special case (treated in the next 
section). 

3.1 COPY 
Problem: Write a process X to copy characters output by 
process west to process, east. 
Solution: 

X :: ,[c:character; west?c ~ east!c] 

Notes: (1) When west terminates, the input "west?e" will 
fail, causing termination of the repetitive command, and 
of  process X. Any subsequent input command from east 
will fail. (2) Process X acts as a single-character buffer 
between west and east. It permits west to work on 
production of  the next character, before east is ready to 
input the previous one. 

3.2 S Q U A S H  
Problem: Adapt the previous program to replace every 
pair of  consecutive asterisks "**" by an upward arrow 
"~". Assume that the final character input is not an 
asterisk. 
Solution: 

X :: ,[c:character; west?c --~ 
[c # asterisk --~ east!c 
0c = asterisk ---~ wesOc; 

[c # asterisk ~ east!asterisk; east!c 
Dc = asterisk ~ east!upward arrow 

11 ] 

Notes: (l)  Since west does not end with asterisk, the 
second "west?c" will not fail. (2) As an exercise, adapt 
this process to deal sensibly with input which ends with 
an odd number of  asterisks. 

3.3 D I S A S S E M B L E  
Problem: to read cards from a cardfile and output to 
process X the stream of characters they contain. An extra 
space should be inserted at the end of  each card. 
Solution: 

• [cardimage:(l. .80)character; cardfile?cardimage 
i:integer; i ~ 1; 
• [i _< 80 ~ X!cardimage(i); i .~ i + 1] 
X!space 

] 

Notes: (1) "(1..80)character" declares an array of 80 
characters, with subscripts ranging between 1 and 80. (2) 
The repetitive command terminates when the cardfile 
process terminates. 

3.4 A S S E M B L E  
Problem: To read a stream of  characters from process X 
and print them in lines of  125 characters on a lineprinter. 
The last line should be completed with spaces if neces- 
sary. 
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Solution: 

l ineiraage:(  1.. 125)character;  
/ : integer; i ~ 1; 
• [c:character;  X?c 

l i ne image(0  ~ c; 
[i~_ 124--~ i := i + I 

Ui = 125 ~ l inepr in ter ! l ine image;  i ~ 1 

l 1; 
[i = ! ~ sk ip  

0i > 1 ~ *[i _< 125 ~ l i n e i m a g e ( 0  ~ space; i ~ i + ll;  
l inepr in te r ! l ine image  

1 

Note: (I) When X terminates, so will the first repetitive 
command of  this process. The last line will then be 
printed, if it has any characters. 

3.5 Reformat 
Problem: Read a sequence of  cards of  80 characters each, 
and print the characters on a linepfinter at 125 characters 
per line. Every card should be followed by an extra 
space, and the last line should be completed with spaces 
if necessary. 
Solution: 

[west::DISASSEMBLEI IX::COPYIleast=ASSEMBLE] 

Notes: (1) The capitalized names stand for program text 
defmed in previous sections. (2) The parallel command 
is designed to terminate after the cardfile has terminated. 
(3) This elementary problem is difficult to solve elegantly 
without coroutines. 

3.6 Conway's Problem [4] 
Problem: Adapt the above program to replace every pair 
of  consecutive asterisks by an upward arrow. 
Solution: 

[wes t=DISASSEMBLE[  IX=SQUASH[ leas t=ASSEMBLE] 

... ; subr?(results). Any commands between these two will 
be executed concurrently with the subroutine. 

A multiple-entry subroutine, acting as a representa- 
tion for data [ 11 ], will also contain a repetitive command 
which represents each entry by an alternative input to a 
structured target with the entry name as constructor. For  
example, 

• [X?ent ry l (va lue  pa rams)  ~ ... 

I ]X?entry2(value pa rams)  --~ ... 

1 

The calling process X will determine which of  the alter- 
natives is activated on each repetition. When X termi- 
nates, so does this repetitive command. A similar tech- 
nique in the user program can achieve the effect of  
multiple exits. 

A recursive subroutine can be simulated by an array 
of  processes, one for each level of  recursion. The user 
process is level zero. Each activation communicates its 
parameters and results with its predecessor and calls its 
successor if  necessary: 

[recsub(0) : :USERllrecsub(i :  l . . rec l imit ) : :RECSUB].  

The user will call the first element of 

recsub: recsub( l ) ! (a rguments ) ;  ... ; recsub(l)?(resul ts) ; .  

The imposition of  a fixed upper bound on recursion 
depth is necessitated by the "static" design of  the lan- 
guage. 

This clumsy simulation of  recursion would be even 
more clumsy for a mutually recursive algorithm. It would 
not be recommended for conventional programming; it 
may be more suitable for an array of microprocessors 
for which the fixed upper bound is also realistic. 

In this section, we assume each subroutine is used 
only by a single user process (which may, of  course, itself 
contain parallel commands). 

4. Subroutines and Data Representat ions 

A conventional nonrecursive subroutine can be read- 
ily implemented as a coroutine, provided that (1) its 
parameters are called "by value" and "by result," and 
(2) it is disjoint from its calling program. Like a Fortran 
subroutine, a coroutine may retain the values of  local 
variables (own variables, in Algol terms) and it may use 
input commands to achieve the effect of  "multiple entry 
points" in a safer way than PL/I.  Thus a coroutine can 
be used like a SIMULA class instance as a concrete rep- 
resentation for abstract data. 

A coroutine acting as a subroutine is a process oper- 
ating concurrently with its user process in a parallel 
command: [subr::SUBROUTINEI[X::uSER]. The SUBROU- 
TINE will contain (or consist of) a repetitive command: 
*[X?(value params) ~ ... ; X!(result params)], where ... 
computes the results from the values input. The subrou- 
tine will terminate when its user does. The USER will call 
the subroutine by a pair of commands: subr!(arguments); 
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4.1 Function: Division With Remainder 
Problem: Construct a process to represent a function- 
type subroutine, which accepts a positive dividend and 
divisor, and returns their integer quotient and remainder. 
Efficiency is of  no concern. 
Solution: 

[DIV :: ,[ x,y:integer; X?( x,y) --~ 
quot , rem: in teger ;quot  m 0; rein ~ x; 
• (rein _> y ~ rem ~ rem - y; quo t  ~ quo t  + 1]; 

X!(quot , rem)  

1 
[IX=USER 
1 

4.2 Recursion: Factorial 
Problem: Compute a factorial by the recursive method, 
to a given limit. 
Solution: 

[fac( i: 1..limit):: 
• [n:mteger;fac(i  - t)?n 

[n = 0 ~ fac(i  -- 1)!1 
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fin > 0 - ~  fac ( i  + l ) ! n -  1; 
r :kn tege r ; f ac ( i  + l ) ? r ; f ac ( i  - i ) ! (n  • r)  

II 
I l f a c (O) : :USER 
] 

Note: This unrealistic example introduces the technique 
of the "iterative array" which will be used to a better 
effect: in later examples. 

4.3 Data Representation: Small Set of  Integers [11] 
Problem: To represent a set of not more than 100 integers 
as a process, S, which accepts two kinds of instruction 
from its calling process X: (1) S!insert(n), insert the 
integer n in the set, and (2) S!has(n); ... ; S?b, b is set true 
if n is in the set, and false otherwise. The initial value of 
the set is empty. 

Solution: 

S:: 
c o n t e n t : ( 0 . . 9 9 ) i n t e g e r ;  s i ze : in t ege r ;  s ize  .--- 0; 

• [ n : i n t e g e r ; X ? h a s ( n )  --* S E A R C H ; X ! ( i  < s ize)  

f in : in teger ;  X ? i n s e r t ( n )  --* S E A R C H ;  
[ i  < s ize  --* s k i p  
fii = size;  s i ze  < 100 --~ 

c o n t e n t  (s ize)  .---- n; s i ze  .--'-- s ize  + l 

] l 

where SEARCH is an abbreviation for: 

/ : in teger ;  i .--- 0; 

• [i < size;  c o n t e n t ( 0  # n -- ,  i .--- i + l]  

Notes: (1) The alternative command with guard "size < 
100" will fail if an attempt is made to insert more than 
100 elements. (2) The activity of insertion will in general 
take place concurrently with the calling process. How- 
ever, any subsequent instruction to S will be delayed 
until the previous insertion is complete. 

4.4 Scanning a Set 
Problem: Extend the solution to 4.3 by providing a fast 
method for scanning all members of the set without 
changing the value of the set. The user program will 
contain a repetitive command of the form: 

S!scan(  ); m o r e : b o o l e a n ;  m o r e  .--- t rue ;  

• [ m o r e ; x : i n t e g e r ;  S ? n e x t ( x )  -- ,  ... d e a l  w i t h  x .... 
f imore;  S ? n o n e l e f i (  ) - - ,  m o r e  .--- f a l se  

l 

where S!scan( ) sets the representation into a scanning 
mode. The repetitive command serves as a for statement, 
inputting the successive members of x from the set and 
inspecting them until finally the representation sends a 
signal that there are no members left. The body of the 
repetitive command is no t  permitted to communicate 
with S in any way. 

Solution: Add a third guarded command to the outer 
repetitive command of S: 

... f iX?scan (  ) ~ / : i n t e g e r ;  i ~ 0; 
• [i < s ize  --~ X ! n e x t ( c o n t e n t ( 0 ) ;  i .--- i + l];  
X ! n o n e l e f t (  ) 

6 7 2  

4.5 Recursive Data Representation: Small  Set  of  
Integers 
Problem: Same as above, but a.n array of processes is to 
be used to achieve a high degree of parallelism. Each 
process should contain at most one number. When it 
contains no number, it should answer "false" to all 
inquiries about membership. On the first insertion, it 
changes to a second phase of behavior, in which it deals 
with instructions from its predecessor, passing some of 
them on to its successor. The calling process will be 
named S(0). For efficiency, the set should be sorted, i.e. 
the ith process should contain the / th  largest number. 

Solution: 
S(i: I.. 100):: 

• [n : in teger ;  S ( i  - l ) ? h a s ( n )  ~ S(0) ! fa l se  

f in : in teger ;  S ( i  - l ) ? i n s e r t ( n )  --~ 

, I r a : i n t e g e r ;  S( i  - 1 )?has (m)  ---* 
[m _< n ~ S (0 ) ! (m = n) 

fire > n ---* S ( i  + l ) ! h a s ( m )  

1 
f i re : in teger ;  S( i  - I ) ? i n s e r t ( m )  ---> 

[ m <  n --* S ( i  + l ) ! i n se r t (n ) ;  n ~ m 

fire = n ~ s k i p  
fire > n --~ S ( i  + l ) ! i n s e r t ( m )  

I I I  

Notes: (1) The user process S(0) inquires whether n is a 
member by the commands S(l)!has(n); ... ; [(i: l.. 100)S(0? 
b --> skip]. The appropriate process will respond to the 
input command by the output command in line 2 or line 
5. This trick avoids passing the answer back "up the 
chain." (2) Many insertion operations can proceed in 
parallel, yet any subsequent "has" operation will be 
performed correctly. (3) All repetitive commands and all 
processes of the array will terminate after the user process 
S(0) terminates. 

4.6 Multiple Exits: Remove the Least Member 
Exercise: Extend the above solution to respond to a 
command to yield the least member of the set and to 
remove it from the set. The user program will invoke the 
facility by a pair of commands: 

S(1) ! leas t (  ); [ x : i n t e g e r ; S ( l ) ? x  --* ... d e a l  w i t h  x ... 
f i S ( l ) ? n o n e l e f t (  ) ---> ... 

1 

or, if he wishes to scan and empty the set, he may write: 

S ( l ) ! l e a s t (  ) ; m o r e : b o o l e a n ;  m o r e  .'= t rue ;  
• [more ;  x : i n t e g e r ;  S ( l ) ? x - - ,  ... d e a l  w i t h  x ... ; S ( l ) ! l e a s t (  ) 
f imore;  S ( l ) ? n o n e l e f i (  ) ~  m o r e  .--- f a l se  

1 

Hint: Introduce a Boolean variable, b, initialized to true, 
and prefu¢ this to all the guards of the inner loop. After 
responding to a !least( ) command from its predecessor, 
each process returns its contained value n, asks its suc- 
cessor for its least, and stores the response in n. But if the 
successor returns "noneleft( )," b is set false and the 
inner loop terminates. The process therefore returns to 
its initial state (solution due to David Gries). 
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5. Monitors  and Scheduling 

This section shows how a monitor can be regarded as 
a single process which communicates with more than 
one user process. However, each user process must have 
a different name (e.g. producer, consumer) or a different 
subscript (e.g. X(0) and each communication with a user 
must identify its source or destination uniquely. 

Consequently, when a monitor is prepared to com- 
municate with any of its user processes (i.e. whichever of 
them calls first) it will use a guarded command with a 
range. For example: .[(i:1.. 100)X(0?(value parameters) 
--~ ... ; X(0!(results)]. Here, the bound variable i is used 
to send the results back to the calling process. If  the 
monitor is not prepared to accept input from some 
particular user (e.g. X(j)) on a given occasion, the input 
command may be preceded by a Boolean guard. For 
example, two successive inputs from the same process 
are inhibited by j = 0; *[(i: 1.. 100)i # j; X(0?(values ) --, 
... ; j  .--- i]. Any attempted outpui from X(j) will be 
delayed until a subsequent iteration, after the output of 
some other process X(i) has been accepted and dealt 
with. 

Similarly, conditions can be used to delay acceptance 
of  inputs which would violate scheduling constraints-- 
postponing them until some later occasion when some 
other process has brought the monitor into a state in 
which the input can validly be accepted. This technique 
is similar to a conditional critical region [10] and it 
obviates the need for special synchronizing variables 
such as events, queues, or conditions. However, the 
absence of these special facilities certainly makes it more 
difficult or less efficient to solve problems involving 
priorities--for example, the scheduling of  head move- 
ment on a disk. 

However, after the producer has produced its next por- 
tion, the consumer's request can be granted on the next 
iteration. (3) Similar remarks apply to the producer, 
when in -- out + 10. (4) X is designed to terminate when 
out = in and the producer has terminated. 

5.2 Integer Semaphore 
Problem: To implement an integer semaphore, S, shared 
among an array X(i:I..100) of client processes. Each 
process may increment the semaphore by S!V()  or 
decrement it by S!P(),  but the latter command must be 
delayed if the value of the semaphore is not positive. 
Solution: 
S::val:integer; val .--- 0; 

*[(i:I. .100)X(0?V ( ) ~ val .--- val + 1 
II(i:l..100)val > 0; X(0?P ( ) --,  val ~ val - 1 
] 

Notes: (1) In this process, no use is made of knowledge 
of the subscript i of the calling process. (2) The sema- 
phore terminates only when all hundred processes of the 
process array X have terminated. 

5.3 Dining Philosophers (Problem due to E.W. Dijkstra) 
Problem: Five philosophers spend their lives thinking 
and eating. The philosophers share a common dining 
room where there is a circular table surrounded by five 
chairs, each belonging to one philosopher. In the center 
of the table there is a large bowl of spaghetti, and the 
table is laid with five forks (see Figure 1). On feeling 
hungry, a philosopher enters the dining room, sits in his 
own chair, and picks up the fork on the left of  his place. 
Unfortunately, the spaghetti is so tangled that he needs 
to pick up and use the fork on his right as well. When he 
has finished, he puts down both forks, and leaves the 
room. The room should keep a count of the number of  
philosophers in it. 

5.1 Bounded Buffer 
Problem: Construct a buffering process X to smooth 
variations in the speed of  output of portions by a pro- 
ducer process and input by a consumer process. The 
consumer contains pairs of commands X!more( ); 
X?p, and the producer contains commands of the form 
X!p. The buffer should contain up to ten portions. 
Solution: 

X:: 
buffer:(0..9) portion; 
in,out:integer; in .--- 0; out .--- 0; 
comment 0 <_ out _< in _< out + 10; 

*[in < out  + 10; producer?buffer( in mod 10) --* in .--- in + 1 
[lout < in; consumer?more(  ) --~ consumer!buffer(out  rood 10); 

out .--- out + 1 
] 

Notes: (1) When out < in < out + 10, the selection of 
the alternative in the repetitive command will depend on 
whether the producer produces before the consumer 
consumes, or vice versa. (2) When out -- in, the buffer is 
empty and the second alternative cannot be selected even 
if  the consumer is ready with its command X!more() .  

Fig. 1. 

(2 

Solution: The behavior of  the ith philosopher may be 
described as follows: 

PHIL = *[... dur ing ith lifetime ... ---, 
T H I N K ;  
room!enter(  ); 
fork(0!pickup( ); f o r k ( ( / +  1) rood 5)!pickup( ); 
EAT; 
fork(i)!putdown( ); f o r k ( ( / +  1) mod 5)!putdown( ); 
room!exit( ) 
] 
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The fate of  the ith fork is to be picked up and put down 
by a philosopher sitting on either side of  it 

F O R K  = 
*[phil(0?pickup( )--* phi l (0?putdown( ) 
0phil((i - 1)rood 5)?pickup( ) --* p h i l ( ( / -  l) raod 5)?putdown( ) 

1 

The story of  the room may be simply told: 

R O O M  = occupancy:integer; occupancy .--- 0; 
,[( i :0. .4)phil(0?enter ( ) --* occupancy .--- occupancy + l 
11(i:0..4)phil(0?exit ( ) --~ occupancy .--- occupancy - l 
] 

All these components operate in parallel: 

[ room: :ROOM I [fork( i:0..4)::FORK I Iphil( i:0..4)::PHIL]. 

Notes: (1) The solution given above does not prevent all 
five philosophers from entering the room, each picking 
up his left fork, and starving to death because he cannot 
pick up his right fork. (2) Exercise: Adapt the above 
program to avert this sad possibility. Hint: Prevent more 
than four philosophers from entering the room. (Solution 
due to E. W. Dijkstra). 

6. M i s c e l l a n e o u s  

This section contains further examples of  the use of  
communicating sequential processes for the solution of  
some less familiar problems; a parallel version of  the 
sieve of  Eratosthenes, and the design of  an iterative 
array. The proposed solutions are even more speculative 
than those of  the previous sections, and in the second 
example, even the question of  termination is ignored. 

6.1 Prime Numbers: T h e  S ieve  o f  E r a t o s t h e n e s  [14] 
Problem: To print in ascending order all primes less than 
10000. Use an array of  processes, SIEVE, in which each 
process inputs a prime from its predecessor and prints it. 
The process then inputs an ascending stream of  numbers 
from its predecessor and passes them on to its successor, 
suppressing any that are multiples of  the original prime. 
Solution: 

[SIEVE(i: 1 . .  100):: 
p,rap:integer; 

S I E V E ( i -  l)?p; 
print!p; 
rap .--- p; comment  rap is a mult iple o f  p; 

,[re:integer; S I E V E ( / -  l)?m ---* 
*[m > mp ~ mp .--'- m p +  p]; 
[m = rap --* skip 
nra < rap --* SIEVE( i  + l)!ra 

] ] 
HSIEVE(0)::print!2; n:integer; n .--- 3; 

* I n <  10000--* SIEVE(I)!n;  n .--- n + 2] 
IISIEVE(101)::*[n:integer;SIEVE(100)?n --~ print!n] 
Hprint::,[(i:0.. 101) n:integer; SIEVE(0?n  --> ...] 

1 

Note: (1) This beautiful solution was contributed by 
David Giles. (2) It is algorithmically similar to the 
program developed in [7, pp. 27-32]. 
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6.2 An Iterative Array: Matrix Mult ip l i ca t ion  
Problem: A square matrix A of  order 3 is given. Three 
streams are to be input, each stream representing a 
column of  an array IN. Three streams are to be output, 
each representing a column of" the product matrix IN × 
A. After an initial delay, the results are to be produced 
at the same rate as the input is consumed. Consequently, 
a high degree of  parallelism is required. The solution 
should take the form shown in Figure 2. Each of  the nine 
nonborder nodes inputs a vector component from the 
west and a partial sum from the north. Each node outputs 
the vector component to its east, and an updated partial 
sum to the south. The input data is produced by the west 
border nodes, and the desired results are consumed by 
south border nodes. The north border is a constant 
source of  zeros and the east border is just a sink. No 
provision need be made for termination nor for changing 
the values of  the array A. 

Fig. 2. 

0 0 0 

~111 ~12x A13x 

A11x*Azly A12x*A22y A13x*A23y 

A11x*A21y,A~ AlzX.A22Y.A3~ AoX.A23y.A~z 

S 

Solution: There are twenty-one nodes, in five groups, 
comprising the central square and the four borders: 

[M(i: 1 ..3,0)::WEST 
I IM(0d: I..3)::NORTH 
I IM(i: I..3,4)::EAST 
I IM(4j:I..3)::SOUTH 
I IM(i:I..3d:I..3)::CENTER 
1 

The WEST and SOUTH borders are processes of  the user 
program; the remaining processes are: 

N O R T H  = . [ t rue  --* M(Id)!0 ] 
EAST = .Ix:real;  M(i,3)?x---> skip] 
C E N T E R  = .[x:real;  M(id  - l)?x --* 

M ( i , j  + l)!x; sum:real; 
M( i  - l , j )?sum; M( i  + l d ) ! ( A ( i , j ) * x  + sum) 

] 

7. D i s c u s s i o n  

A design for a programming language must neces- 
sarily involve a number of  decisions which seem to be 
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fairly arbitrary. The discussion of this section is intended 
to explain some of the underlying motivation and to 
mention some unresolved questions. 

7.1 Notations 
I have chosen single-character notations (e.g. !,?) to 

express the primitive concepts, rather than the more 
traditional boldface or underlined English words. As a 
result, the examples have an APL-like brevity, which 
some readers fred distasteful. My excuse is that (in 
contrast to APL) there are only a very few primitive 
concepts and that it is standard practice of mathematics 
(and also good coding practice) to denote common prim- 
itive concepts by brief notations (e.g. +,x).  When read 
aloud, these are replaced by words (e.g. plus, times). 

Some readers have suggested the use of assignment 
notation for input and output: 

<target variable> := <source> 
<destination> .--- <expression> 

I fend this suggestion misleading: it is better to regard 
input and output as distinct primitives, justifying distinct 
notations. 

I have used the same pair of brackets ([...]) to bracket 
all program structures, instead of the more familiar 
variety of brackets (if..fi, begin..end, case...esac, etc.). In 
this I follow normal mathematical practice, but I must 
also confess to a distaste for the pronunciation of words 
like fi, od, or esac. 

I am dissatisfied with the fact that my notation gives 
the same syntax for a structured expression and a sub- 
scripted variable. Perhaps tags should be distinguished 
from other identifiers by a special symbol (say #). 

I was tempted to introduce an abbreviation for com- 
bined declaration and input, e.g. X?(n:integer) for 
n:integer; X?n. 

7.2 Expficit Naming 
My design insists that every input or output com- 

mand must name its source or destination explicitly. This 
makes it inconvenient to write a library of processes 
which can be included in subsequent programs, inde- 
pendent of the process names used in that program. A 
partial solution to this problem is to allow one process 
(the main process) of a parallel command to have an 
empty label, and to allow the other processes in the 
command to use the empty process name as source or 
destination of input or output. 

For construction of  large programs, some more gen- 
eral technique will also be necessary. This should at least 
permit substitution of program text for names defined 
elsewhere--a technique which has been used informally 
throughout this paper. The Cobol coPY verb also permits 
a substitution for formal parameters within the copied 
text. But whatever facility is introduced, I would rec- 
ommend the following principle: Every program, after 
assembly with its library routines, should be printable as 
a text expressed wholly in the language, and it is this 
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printed text which should describe the execution of  the 
program, independent of  which parts were drawn from 
a library. 

Since I did not intend to design a complete language, 
I have ignored the problem of libraries in order to 
concentrate on the essential semantic concepts of the 
program which is actually executed. 

7.3 Port Names 
An alternative to explicit naming of  source and des- 

tination would be to name a port through which com- 
munication is to take place. The port names would be 
local to the processes, and the manner in which pairs of  
ports are to be connected by channels could be declared 
in the head of a parallel command. 

This is an attractive alternative which could be de- 
signed to introduce a useful degree of  syntactically check- 
able redundancy. But it is semantically equivalent to the 
present proposal, provided that each port is connected to 
exactly one other port in another process. In this case 
each channel can be identified with a tag, together with 
the name of the process at the other end. Since I wish to 
concentrate on semantics, I preferred in this paper to use 
the simplest and most direct notation, and to avoid 
raising questions about the possibility of connecting more 
than two ports by a single channel. 

7.4 Automatic Buffering 
As an alternative to synchronization of input and 

output, it is often proposed that an outputting process 
should be allowed to proceed even when the inputting 
process is not yet ready to accept the output. An imple- 
mentation would be expected automatically to interpose 
a chain of buffers to hold output messages that have not 
yet been input. 

I have deliberately rejected this alternative, for two 
reasons: (1) It is less realistic to implement in multiple 
disjoint processors, and (2) when buffering is required 
on a particular channel, it can readily be specified using 
the given primitives. Of course, it could be argued 
equally well that synchronization can be specified when 
required by using a pair of buffered input and output 
commands. 

7.5 Unbounded Process Activation 
The notation for an array of  processes permits the 

same program text (like an Algol recursive procedure) to 
have many simultaneous "activations"; however, the 
exact number must be specified in advance. In a conven- 
tional single-processor implementation, this can lead to 
inconvenience and wastefulness, similar to the fixed- 
length array of Fortran. It would therefore be attractive 
to allow a process array with no a priori bound on the 
number of elements; and to specify that the exact number 
of elements required for a particular execution of the 
program should be determined dynamically, like the 
maximum depth of recursion of an Algol procedure or 
the number of iterations of a repetitive command. 
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However, it is a good principle that every actual run 
of a program with unbounded arrays should be identical 
to the run of some program with all its arrays bounded 
in advance. Thus the unbounded program should be 
defined as the "limit" (in some sense) of a series of 
bounded programs with increasing bounds. I have cho- 
sen to concentrate on the semantics of the bounded 
case--which is necessary anyway and which is more 
realistic for implementation on multiple microprocessors. 

7.6 Fairness 
Consider the parallel command: 

[X::Y!stop( )ll Y::continue:boolean; continue .--- true; 
.[continue; X?stop( ) ~ continue .--- false 

Ilcontinue ---, n .--- n + 1 

1 
1. 

If  the implementation always prefers the second alter- 
native in the repetitive command of Y, it is said to be 
unfair, because although the output command in X could 
have been executed on an infinite number of occasions, 
it is in fact always passed over. 

The question arises: Should a programming language 
definition specify that an implementation must be fair?. 
Here, I am fairly sure that the answer is NO. Otherwise, 
the implementation would be obliged to successfully 
complete the example program shown above, in spite of  
the fact that its nondeterminism is unbounded. I would 
therefore suggest that it is the programmer's responsibil- 
ity to prove that his program terminates correctly--with- 
out relying on the assumption of fairness in the imple- 
mentation. Thus the program shown above is incorrect, 
since its termination cannot be proved. 

Nevertheless, I suggest that an efficient implementa- 
tion should try to be reasonably fair and should ensure 
that an output command is not delayed unreasonably 
often after it first becomes executable. But a proof of 
correctness must not rely on this property of an efficient 
implementation. Consider the following analogy with a 
sequential program: An efficient implementation of an 
alternative command will tend to favor the alternative 
which can be most efficiently executed, but the program- 
mer must ensure that the logical correctness of his pro- 
gram does not depend on this property of his implemen- 
tation. 

This method of avoiding the problem of fairness does 
not apply to programs such as operating systems which 
are intended to run forever because in this case termi- 
nation proofs are not relevant. But I wonder whether it 
is ever advisable to write or to execute such programs. 
Even an operating system should be designed to bring 
itself to an orderly conclusion reasonably soon after it 
inputs a message instructing it to do so. Otherwise, the 
only way to stop it is to "crash" it. 

7.7 Functional Coroutines 
It is interesting to compare the processes described 

here with those proposed in [12]; the differences are most 
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striking. There, coroutines are strictly deterministic: No 
choice is given between alternative sources of input. The 
output commands are automatically buffered to any 
required degree. The output of  one process can be au- 
tomatically fanned out to any :number of processes (in- 
cluding itself!) which can consume it at differing rates. 
Finally, the processes there are designed to run forever, 
whereas my proposed parallel command is normally 
intended to terminate. The design in [12] is based on an 
elegant theory which permits proof of  the properties of  
programs. These differences are not accidental--they 
seem to be natural consequences of the difference be- 
tween the more abstract applicative (or functional) ap- 
proach to programming and the more machine-oriented 
imperative (or procedural) approach, which is taken by 
communicating sequential processes. 

7.8 Output Guards 
Since input commands may appear in guards, it 

seems more symmetric to permit output commands as 
well. This would allow an obvious and useful simplifi- 
cation in some of the example programs, for example, in 
the bounded buffer (5.1). Perhaps a more convincing 
reason would be to ensure that the externally visible 
effect and behavior of every parallel command can be 
modeled by some sequential command. In order to 
model the parallel command 

Z :: [X!211Y!3 l 

we need to be able to write the sequential alternative 
command: 

Z :: [X!2 ~ Y!31I Y!3 ~ X!2] 

Note that this cannot be done by the command 

Z :: [true ~ X!2; Y!31]true ~ Y!3; X!2] 

which can fail if the process Z happens to choose the 
first alternative, but the processes Y and X are synchro- 
nized with each other in such a way that Y must input 
from Z before X does, e.g. 

Y :: Z?y; X!go( )  
IIX:: Y?go(); Z?x 

7.9 Restriction: Repetitive Command With Input Guard 
In proposing an unfamiliar programming language 

feature, it seems wiser at first to specify a highly restric- 
tive version rather than to propose extensions-- 
especially when the language feature claims to be prim- 
itive. For example, it is clear that the multidimensional 
process array is not primitive, since it can readily be 
constructed in a language which permits only single- 
dimensional arrays. But I have a rather more serious 
misgiving about the repetitive command with input 
guards. 

The automatic termination of a repetitive command 
on termination of the sources of all its input guards is an 
extremely powerful and convenient feature but it also 
involves some subtlety of specification to ensure that it 
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is implementable; and it is certainly not primitive, since 
the required effect can be achieved (with considerable 
inconvenience) by explicit exchange of "end()" signals. 
For example, the subroutine DIV(4. l) could be rewritten: 

[DIV :: continue:boolean; continue .---- true; 
*[continue; X?endO--, continue .--- false 
[Icontinue; x,y:integer; X?(x,y) ---> ... ; X!(quot,rem) 

[IX :: USER PROG; DIV!endO 
] 

Other examples would be even more inconvenient. 
But the dangers of convenient facilities are notorious. 

For example, the repetitive commands with input guards 
may tempt the programmer to write them without mak- 
ing adequate plans for their termination; and if it turns 
out that the automatic termination is unsatisfactory, 
reprogramming for explicit termination will involve se- 
vere changes, affecting even the interfaces between the 
processes. 

8. C o n c l u s i o n  

This paper has suggested that input, output, and 
concurrency should be regarded as primitives of pro- 
gramming, which underlie many familiar and less famil- 
iar programming concepts. However, it would be unjus- 
tified to conclude that these primitives can wholly replace 
the other concepts in a programming language. Where 
a more elaborate construction (such as a procedure or a 
monitor) is frequently useful, has properties which are 
more simply provable, and can also be implemented 
more efficiently than the general case, there is a strong 
reason for including in a programming language a special 
notation for that construction. The fact that the construc- 
tion can be defined in terms of simpler underlying prim- 
itives is a useful guarantee that its inclusion is logically 
consistent with the remainder of the language. 
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