# COMS 4771 Introduction to Machine Learning

Nakul Verma

## Announcements

- HW2 due now!
- Project proposal due on tomorrow
- Midterm next lecture!
- HW3 posted

### Last time...

- Linear Regression
- Parametric vs Nonparametric regression
- Logistic Regression for classification
- Ridge and Lasso Regression
- Kernel Regression
- Consistency of Kernel Regression
- Speeding non-parametric regression with trees

# Towards formalizing 'learning'

What does it mean to **learn** a concept?

• Gain knowledge or experience of the concept.

The basic process of **learning** 

- Observe a phenomenon
- Construct a model from observations
- Use that model to make decisions / predictions

How can we make this more precise?

# A statistical machinery for learning

Phenomenon of interest:

Input space: X Output space: Y

There is an unknown distribution  $\mathcal{D}$  over  $(X \times Y)$ 

The learner observes m examples  $(x_1, y_1), \ldots, (x_m, y_m)$  drawn from  $\mathcal{D}$ 

Construct a model: Let  $\mathcal{F}$  be a collection of models, where each  $f : X \to Y$  predicts y given xFrom m observations, select a model  $f_m \in \mathcal{F}$  which predicts well.

$$\operatorname{err}(f) := \mathbb{P}_{(x,y)\sim\mathcal{D}}\Big[f(x) \neq y\Big]$$
 (generalization error of  $f$  )

We can say that we have *learned* the phenomenon if

$$\operatorname{err}(f_m) - \operatorname{err}(f^*) \leq \epsilon \qquad f^* := \operatorname{argmin}_{f \in \mathcal{F}} \operatorname{err}(f)$$

for any tolerance level  $\epsilon > 0$  of our choice.

# PAC Learning

For all tolerance levels  $\epsilon > 0$ , and all confidence levels  $\delta > 0$ , if there exists some model selection algorithm  $\mathcal{A}$  that selects  $f_m^{\mathcal{A}} \in \mathcal{F}$  from m observations ie,  $\mathcal{A} : (x_i, y_i)_{i=1}^m \mapsto f_m^{\mathcal{A}}$ , and has the property:

with probability at least  $1-\delta$  over the draw of the sample,

 $\operatorname{err}(f_m^{\mathcal{A}}) - \operatorname{err}(f^*) \le \epsilon$ 

We call

- The model class  $\mathcal{F}$  is PAC-learnable.
- If the m is polynomial in  $\frac{1}{\epsilon}$  and  $\frac{1}{\delta}$ , then  $\mathcal{F}$  is efficiently PAC-learnable

A popular algorithm:

Empirical risk minimizer (ERM) algorithm

$$f_m^{\text{ERM}} := \operatorname{argmin}_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^m \mathbf{1} \{ f(x_i) \neq y_i \}$$

# PAC learning simple model classes

### Theorem (finite size $\mathcal{F}$ ):

Pick any tolerance level  $\epsilon > 0$ , and any confidence level  $\delta > 0$ let  $(x_1, y_1), \ldots, (x_m, y_m)$  be m examples drawn from an unknown  $\mathcal{D}$ if  $m \ge C \cdot \frac{1}{\epsilon^2} \ln \frac{|\mathcal{F}|}{\delta}$ , then with probability at least  $1 - \delta$  $\operatorname{err}(f_m^{\mathrm{ERM}}) - \operatorname{err}(f^*) \le \epsilon$ 

#### $\mathcal{F}$ is efficiently PAC learnable

#### **Occam's Razor Principle**:

All things being equal, usually the simplest explanation of a phenomenon is a good hypothesis.

Simplicity = representational succinctness

# **Proof sketch**

### Define:

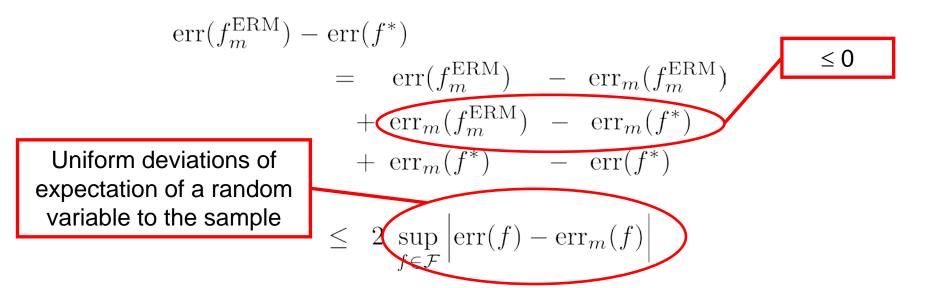
$$\operatorname{err}(f) := \mathbb{E}_{(x,y)\sim\mathcal{D}} \Big[ \mathbf{1} \big\{ f(x) \neq y \big\} \Big]$$

(generalization error of f)

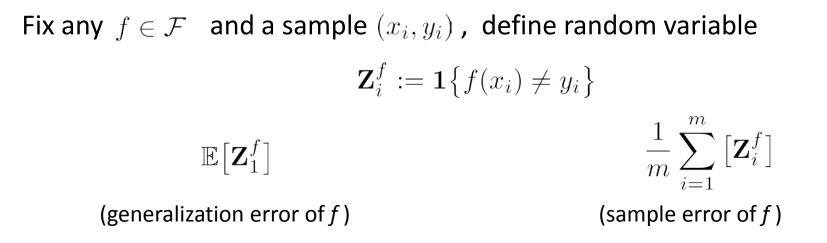
$$\operatorname{err}_{m}(f) := \frac{1}{m} \sum_{i=1}^{m} \left[ \mathbf{1} \left\{ f(x_{i}) \neq y_{i} \right\} \right]$$

(sample error of *f* )

#### We need to analyze:



# **Proof sketch**



### Lemma (Chernoff-Hoeffding bound '63):

Let  $Z_1, \ldots, Z_m$  be *m* Bernoulli r.v. drawn independently from **B**(*p*). for any tolerance level  $\epsilon > 0$ 

$$\mathbb{P}_{\mathbf{Z}_{i}}\left[\left|\frac{1}{m}\sum_{i=1}^{m}[\mathbf{Z}_{i}] - \mathbb{E}[\mathbf{Z}_{1}]\right| > \epsilon\right] \leq 2e^{-2\epsilon^{2}m}.$$

A classic result in **concentration of measure**, proof later

## **Proof sketch**

Need to analyze

$$\mathbb{P}_{(x_i,y_i)} \left[ \text{ exists } f \in \mathcal{F}, \left| \frac{1}{m} \sum_{i=1}^m [\mathbf{Z}_i^f] - \mathbb{E}[\mathbf{Z}_1^f] \right| > \epsilon \right]$$
$$\leq \sum_{f \in \mathcal{F}} \mathbb{P}_{(x_i,y_i)} \left[ \left| \frac{1}{m} \sum_{i=1}^m [\mathbf{Z}_i^f] - \mathbb{E}[\mathbf{Z}_1^f] \right| > \epsilon \right]$$
$$\leq 2|\mathcal{F}| e^{-2\epsilon^2 m} \leq \delta$$

Equivalently, by choosing  $m \ge \frac{1}{2\epsilon^2} \ln \frac{2|\mathcal{F}|}{\delta}$  with probability at least  $1 - \delta$ , for **all**  $f \in \mathcal{F}$ 

$$\frac{1}{m} \sum_{i=1}^{m} [\mathbf{Z}_{i}^{f}] - \mathbb{E}[\mathbf{Z}_{1}^{f}] = \left| \operatorname{err}_{m}(f) - \operatorname{err}(f) \right| \leq \epsilon$$

# PAC learning simple model classes

### Theorem (Occam's Razor):

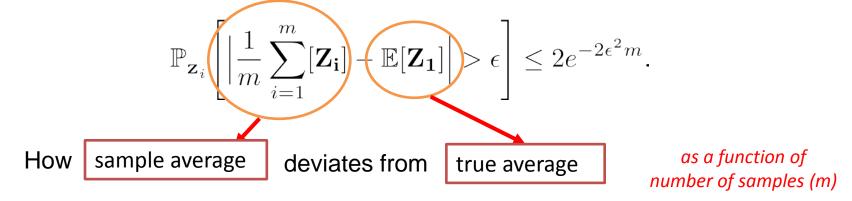
Pick any tolerance level  $\epsilon > 0$ , and any confidence level  $\delta > 0$ let  $(x_1, y_1), \ldots, (x_m, y_m)$  be m examples drawn from an unknown  $\mathcal{D}$ if  $m \ge C \cdot \frac{1}{\epsilon^2} \ln \frac{|\mathcal{F}|}{\delta}$ , then with probability at least  $1 - \delta$  $\operatorname{err}(f_m^{\operatorname{ERM}}) - \operatorname{err}(f^*) \le \epsilon$ 

 $\mathcal{F}$  is efficiently PAC learnable

Still need to prove:

### Lemma (Chernoff-Hoeffding bound '63):

Let  $Z_1, ..., Z_m$  be *m* Bernoulli r.v. drawn independently from **B**(*p*). for any tolerance level  $\epsilon > 0$ 



*Need to analyze: How does the probability measure concentrates towards a central value (like mean)* 

# **Detour: Concentration of Measure**

Let's start with something simple:

Let X be a non-negative random variable. For a given constant c > 0, what is:  $\mathbb{P}[X \ge c]$ ?

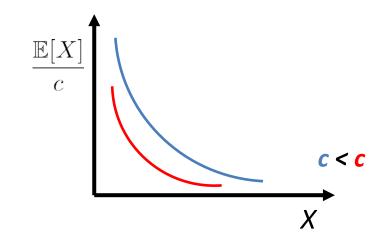
$$\mathbb{P}[X \ge c] \le \frac{\mathbb{E}[X]}{c}$$

Markov's Inequality

#### Why?

**Observation**  $c \cdot \mathbf{1}[X \ge c] \le X$ 

Take expectation on both sides.



Using Markov to bound deviation from mean...

Let X be a random variable (not necessarily non-negative). Want to examine:  $\mathbb{P}[|X - \mathbb{E}X| \ge c]$  for some given constant c > 0

#### **Observation:**

$$\mathbb{P}[|X - \mathbb{E}X| \ge c] = \mathbb{P}[(X - \mathbb{E}X)^2 \ge c^2]$$

$$\leq \frac{\mathbb{E}(X - \mathbb{E}X)^2}{c^2} \qquad by \text{ Markov's Inequality}$$

$$= \frac{\operatorname{Var}(X)}{c^2}$$

FX

*Chebyshev's Inequality True for all distributions!* 

### **Concentration of Measure**

Sharper estimates using an exponential!

Let X be a random variable (not necessarily non-negative). For some given constant c > 0

Observation:

$$\mathbb{P}[X \ge c] = \mathbb{P}[e^{tX} \ge e^{tc}]$$
 for any  $t > 0$   
$$\le \frac{\mathbb{E}[e^{tX}]}{e^{tc}}$$
 by Markov's Inequality

This is called Chernoff's bounding method

### **Concentration of Measure**

Now, Given  $X_1$ , ...,  $X_m$  i.i.d. random variables (assume  $0 \le X_i \le 1$ )

$$\begin{split} \mathbb{P}\Big[\frac{1}{m}\sum_{i=1}^{m}X_{i} - \mathbb{E}X_{1} \geq c\Big] &= \mathbb{P}\Big[\sum_{i=1}^{m}X_{i} - m\mathbb{E}X_{1} \geq mc\Big] \\ &= \mathbb{P}\Big[\sum_{i=1}^{m}Y_{i} \geq mc\Big] \\ &\leq \frac{\mathbb{E}[e^{t(Y_{1}+\ldots+Y_{m})}]}{e^{tmc}} \qquad \begin{array}{l} \textit{By Cherneoff's bounding} \\ \textit{technique} \\ &= \frac{1}{e^{tmc}}\prod_{i=1}^{m}\mathbb{E}[e^{tY_{i}}] \qquad Y_{i}\textit{i.i.d.} \\ \\ &\mathbb{E}[e^{tY_{i}}] \leq e^{t^{2}/8} \\ & \leq e^{t^{2}m/8 - tmc} \\ &\leq e^{-2c^{2}m} \\ \end{array}$$

This **implies** the Chernoff-Hoeffding bound!

# Back to Learning Theory!

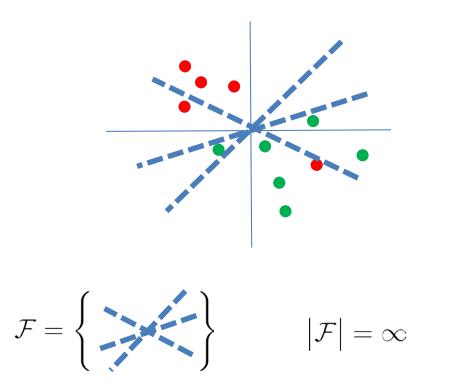
### Theorem (Occam's Razor):

Pick any tolerance level  $\epsilon > 0$ , and any confidence level  $\delta > 0$ let  $(x_1, y_1), \ldots, (x_m, y_m)$  be m examples drawn from an unknown  $\mathcal{D}$ if  $m \ge C \cdot \frac{1}{\epsilon^2} \ln \frac{|\mathcal{F}|}{\delta}$ , then with probability at least  $1 - \delta$  $\operatorname{err}(f_m^{\operatorname{ERM}}) - \operatorname{err}(f^*) \le \epsilon$ 

 $\mathcal{F}$  is efficiently PAC learnable

# Learning general concepts

Consider linear classification



Occam's Razor bound is ineffective

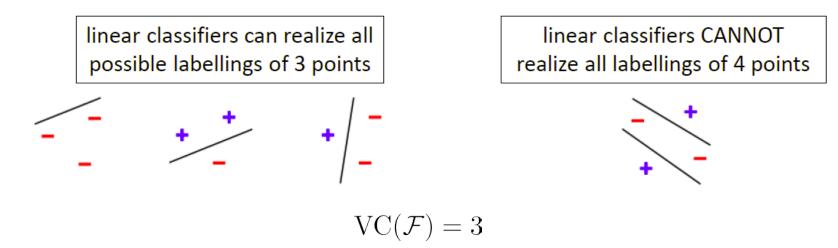
# VC Theory

Need to capture the true richness of  $\ {\cal F}$ 

### Definition (Vapnik-Chervonenkis or VC dimension):

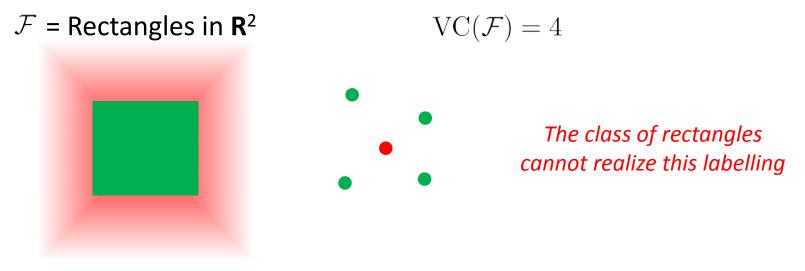
We say that a model class  $\mathcal{F}$  as VC dimension d, if d is the largest set of points  $x_1, \ldots, x_d \subset X$  such that for all possible labelings of  $x_1, \ldots, x_d$ there exists some  $f \in \mathcal{F}$  that achieves that labelling.

**Example:**  $\mathcal{F}$  = linear classifiers in  $\mathbb{R}^2$ 



# **VC** Dimension

### Another example:



VC dimension:

- A **combinatorial concept** to capture the true richness of  $\mathcal{F}$
- Often (but not always!) proportional to the degrees-of-freedom or the number of independent parameters in  ${\cal F}$

# VC Theorem

### Theorem (Vapnik-Chervonenkis '71):

Pick any tolerance level  $\epsilon > 0$ , and any confidence level  $\delta > 0$ let  $(x_1, y_1), \ldots, (x_m, y_m)$  be m examples drawn from an unknown  $\mathcal{D}$ if  $m \ge C \cdot \frac{\operatorname{VC}(\mathcal{F}) \ln(1/\delta)}{\epsilon^2}$ , then with probability at least  $1 - \delta$  $\operatorname{err}(f_m^{\operatorname{ERM}}) - \operatorname{err}(f^*) \le \epsilon$ 

### $\mathcal{F}$ is efficiently PAC learnable

# Tightness of VC bound

### Theorem (VC lower bound):

Let  $\mathcal{A}$  be any model selection algorithm that given m samples, returns a model from  $\mathcal{F}$ , that is,  $\mathcal{A}: (x_i, y_i)_{i=1}^m \mapsto f_m^{\mathcal{A}}$ 

For all tolerance levels  $0 < \epsilon < 1$ , and all confidence levels  $0 < \delta < 1/4$ ,

there exists a distribution  $\mathcal{D}$  such that if  $m \leq C \cdot \frac{\operatorname{VC}(\mathcal{F})}{\epsilon^2}$ 

$$\mathbb{P}_{(x_i,y_i)}\left[\left|\operatorname{err}(f_m^{\mathcal{A}}) - \operatorname{err}(f^*)\right| > \epsilon\right] > \delta$$

• VC dimension of a model class fully characterizes its learning ability!

• Results are agnostic to the underlying distribution.

# One algorithm to rule them all?

From our discussion it may seem that ERM algorithm is universally consistent.

This is not the case!

### Theorem (no free lunch, Devroye '82):

Pick any sample size *m*, any algorithm  $\mathcal{A}$  and any  $\epsilon > 0$ There exists a distribution  $\mathcal{D}$  such that

$$\operatorname{err}(f_m^{\mathcal{A}}) > 1/2 - \epsilon$$

while the Bayes optimal error,  $\min_f \operatorname{err}(f) = 0$ 

# Further refinements and extensions

- How to do model class selection? Structural risk results.
- Dealing with kernels Fat margin theory
- Incorporating priors over the models PAC-Bayes theory
- Is it possible to get distribution dependent bound? Rademacher complexity
- How about regression? Can derive similar results for nonparametric regression.

### What We Learned...

- Formalizing learning
- PAC learnability
- Occam's razor Theorem
- VC dimension and VC theorem
- VC theorem
- No Free-lunch theorem

# Questions?



### Midterm!

Unsupervised learning.

## Announcements

- Project proposal due on tomorrow
- Midterm next lecture!
- HW3 posted